Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interactions electric double layer

When a particle becomes charged by triboelectrification, two types of interactions may contribute to the deposition and adhesion of the particle, namely electrical double layers and Coulombic interactions. Electrical double layers are considered to result from the formation of a shell of oppositely charged electrical layers at the interface upon contact. Coulombic interactions result from the forces of interaction which arise between charged particles and uncharged surfaces. [Pg.133]

The Gibbs energy of interacting electrical double layers Ge[Pg.313]

This interface is critically important in many applications, as well as in biological systems. For example, the movement of pollutants tln-ough the enviromnent involves a series of chemical reactions of aqueous groundwater solutions with mineral surfaces. Although the liquid-solid interface has been studied for many years, it is only recently that the tools have been developed for interrogating this interface at the atomic level. This interface is particularly complex, as the interactions of ions dissolved in solution with a surface are affected not only by the surface structure, but also by the solution chemistry and by the effects of the electrical double layer [31]. It has been found, for example, that some surface reconstructions present in UHV persist under solution, while others do not. [Pg.314]

Here we consider the total interaction between two charged particles in suspension, surrounded by tlieir counterions and added electrolyte. This is tire celebrated DLVO tlieory, derived independently by Derjaguin and Landau and by Verwey and Overbeek [44]. By combining tlie van der Waals interaction (equation (02.6.4)) witli tlie repulsion due to the electric double layers (equation (C2.6.lOI), we obtain... [Pg.2681]

Fig. 1. Potential energies of interaction between two coUoidal particles as a function of their surface-surface separation, for electrical double layers due... Fig. 1. Potential energies of interaction between two coUoidal particles as a function of their surface-surface separation, for electrical double layers due...
In some cases, e.g., the Hg/NaF q interface, Q is charge dependent but concentration independent. Then it is said that there is no specific ionic adsorption. In order to interpret the charge dependence of Q a standard explanation consists in assuming that Q is related to the existence of a solvent monolayer in contact with the wall [16]. From a theoretical point of view this monolayer is postulated as a subsystem coupled with the metal and the solution via electrostatic and non-electrostatic interactions. The specific shape of Q versus a results from the competition between these interactions and the interactions between solvent molecules in the mono-layer. This description of the electrical double layer has been revisited by... [Pg.804]

The first basic ingredient in our description of the electric double layer is the coulombic interaction. It seems quite natural to assume that the fields are coupled according to a coulombic Hamiltonian of the same... [Pg.809]

The interaction between two double layers was first considered by Voropaeva et a/.145 These concepts were used to measure the friction between two solids in solution. Friction is proportional to the downward thrust of the upper body upon the lower. However, if their contact is mediated by the electrical double layer associated with each interface, an electric repulsion term diminishes the downward thrust and therefore the net friction. The latter will thus depend on the charge in the diffuse layer. Since this effect is minimum at Eam0, friction will be maximum, and the potential at which this occurs marks the minimum charge on the electrode. [Pg.40]

The electrical double layer at Hg, Tl(Ga), In(Ga), and Ga/aliphatic alcohol (MeOH, EtOH) interfaces has been studied by impedance and streaming electrode methods.360,361 In both solvents the value ofis, was independent of cei (0.01 < cucio4 <0.25 M)and v. The Parsons-Zobel plots were linear, with /pz very close to unity. The differential capacity at metal nature, but at a = 0,C,-rises in the order Tl(Ga) < In(Ga) < Ga. Thus, as for other solvents,120 343 the interaction energy of MeOH and EtOH molecules with the surface increases in the given order of metals. The distance of closest approach of solvent molecules and other fundamental characteristics of Ga, In(Ga), Tl(Ga)/MeOH interfaces have been obtained by Emets etal.m... [Pg.67]

The situations would be totally different when the two surfaces are put in electrolyte solutions. This is because of formation of the electrical double layers due to the existence of ions in the gap between solid surfaces. The electrical double layers interact with each other, which gives rise to a repulsive pressure between the two planar surfaces as... [Pg.168]

For solid surfaces interacting in air, the adhesion forces mainly result from van der Waals interaction and capillary force, but the effects of electrostatic forces due to the formation of an electrical double-layer have to be included for analyzing adhesion in solutions. Besides, adhesion has to be studied as a dynamic process in which the approach and separation of two surfaces are always accompanied by unstable motions, jump in and out, attributing to the instability of sliding system. [Pg.184]

A force-distance curve between layers of the ammonium amphiphiles in water is shown in Figure 8. The interaction is repulsive and is attributed to the electric double-layer... [Pg.7]

In 1910, Georges Gouy (1854-1926) and independently, in 1913, David L. Chapman (1869-1958) introduced the notion of a diffuse electrical double layer at the surface of electrodes resulting from a thermal motion of ions and their electrostatic interactions with the surface. [Pg.697]

Damaskin, B.B.andFrumkffiA. N. (1974) Potentials of zero charge, interaction of metals with water and adsorption of organic substances—111. The role of the water dipoles in the structure of the dense part of the electric double layer. Electrochim. Acta, 19, 173-176. [Pg.99]

At present it is impossible to formulate an exact theory of the structure of the electrical double layer, even in the simple case where no specific adsorption occurs. This is partly because of the lack of experimental data (e.g. on the permittivity in electric fields of up to 109 V m"1) and partly because even the largest computers are incapable of carrying out such a task. The analysis of a system where an electrically charged metal in which the positions of the ions in the lattice are known (the situation is more complicated with liquid metals) is in contact with an electrolyte solution should include the effect of the electrical field on the permittivity of the solvent, its structure and electrolyte ion concentrations in the vicinity of the interface, and, at the same time, the effect of varying ion concentrations on the structure and the permittivity of the solvent. Because of the unsolved difficulties in the solution of this problem, simplifying models must be employed the electrical double layer is divided into three regions that interact only electrostatically, i.e. the electrode itself, the compact layer and the diffuse layer. [Pg.224]

Fig. 2. Schematic diagram of the tunnel gap between sample and tip, with the extension of the electric double layers indicated by the outer Helmholtz plane(OHP). (a) No tip interaction at large tip-sample separation, (b) Overlap of the electric double layers at a distance s = 0.6 nm, which can be achieved by conventional imaging conditions (e.g., Uj = 50 mV It = 2 nA Rt = 2.5 x 107 Q). Inset Dependence of the tunnel gap s on the tunnel resistance Rt for a tunnel barrier of 1.5 eV. Fig. 2. Schematic diagram of the tunnel gap between sample and tip, with the extension of the electric double layers indicated by the outer Helmholtz plane(OHP). (a) No tip interaction at large tip-sample separation, (b) Overlap of the electric double layers at a distance s = 0.6 nm, which can be achieved by conventional imaging conditions (e.g., Uj = 50 mV It = 2 nA Rt = 2.5 x 107 Q). Inset Dependence of the tunnel gap s on the tunnel resistance Rt for a tunnel barrier of 1.5 eV.

See other pages where Interactions electric double layer is mentioned: [Pg.413]    [Pg.478]    [Pg.428]    [Pg.27]    [Pg.394]    [Pg.394]    [Pg.396]    [Pg.465]    [Pg.533]    [Pg.533]    [Pg.17]    [Pg.800]    [Pg.821]    [Pg.62]    [Pg.65]    [Pg.115]    [Pg.191]    [Pg.37]    [Pg.103]    [Pg.550]    [Pg.161]    [Pg.118]    [Pg.120]    [Pg.22]    [Pg.355]    [Pg.66]    [Pg.727]    [Pg.111]    [Pg.99]    [Pg.106]    [Pg.110]    [Pg.18]    [Pg.14]    [Pg.55]   
See also in sourсe #XX -- [ Pg.231 ]




SEARCH



Diffuse electrical double-layer interaction between

Double layer interacting

Electric double layer

Electrical Double Layer Interaction and DLVO Theory

Electrical Double Layers Interaction

Electrical Double Layers Interaction

Electrical double layer

Electrical double layer repulsive interaction

Electrical interactions

Electrical/electrically double-layer

Interaction between Electrical Double Layers

Layer interaction

© 2024 chempedia.info