Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrolytes, composite

Cells operating at low (2,80,81) and high (79,82) temperatures were developed first, but discontinued because of corrosion and other problems. The first medium temperature cell had an electrolyte composition corresponding to KF 3HF, and operated at 65—75°C using a copper cathode and nickel anodes. A later cell operated at 75°C and used KF 2.2HF or KF 2HF as electrolyte (83,84), and nickel and graphite as anode materials. [Pg.125]

Salt that is substantially free of sulfate and other impurities is the cell feed. This grade may be purchased from commercial salt suppHers or made on site by purification of cmde sea or rock salt. Dried calcium chloride or cell bath from dismanded cells is added to the bath periodically as needed to replenish calcium coproduced with the sodium. The heat required to maintain the bath ia the molten condition is suppHed by the electrolysis current. Other electrolyte compositions have been proposed ia which part or all of the calcium chloride is replaced by other salts (61—64). Such baths offer improved current efficiencies and production of cmde sodium containing relatively Htde calcium. [Pg.167]

Capillary Electrophoresis. Capillary electrophoresis (ce) is an analytical technique that can achieve rapid high resolution separation of water-soluble components present in small sample volumes. The separations are generally based on the principle of electrically driven ions in solution. Selectivity can be varied by the alteration of pH, ionic strength, electrolyte composition, or by incorporation of additives. Typical examples of additives include organic solvents, surfactants (qv), and complexation agents (see Chelating agents). [Pg.246]

On the electrode side of the double layer the excess charges are concentrated in the plane of the surface of the electronic conductor. On the electrolyte side of the double layer the charge distribution is quite complex. The potential drop occurs over several atomic dimensions and depends on the specific reactivity and atomic stmcture of the electrode surface and the electrolyte composition. The electrical double layer strongly influences the rate and pathway of electrode reactions. The reader is referred to several excellent discussions of the electrical double layer at the electrode—solution interface (26-28). [Pg.510]

Coulometry measures the amount of cunent flowing dirough a solution in an electrochemical oxidation or reduction reaction and is capable of measuring at ppm or even ppb levels of reactive gases. Thus a sample of ambient air is drawn through an electrolyte in a cell and the required amount of reactant is generated at the electrode. This technique tends to be non-specific, but selectivity can be enhanced by adjustment of pH and electrolyte composition, and by incorporation of filters to remove interfering species. [Pg.310]

The anodic behaviour of Pb varies depending upon the electrolyte composition and the electrode potential and has been the subject of a number of reviews . In NO,", CHjCOO and BF4" solutions, lead will form highly soluble lead salts whilst in Cl" and 804 solutions, insoluble lead salts are formed when Pb is anodically polarised. [Pg.180]

Reagent generated Electrolyte composition Notes Substances titrated End-point detection f... [Pg.546]

Changes in the reference electrode junction potential result from differences in the composition of die sample and standard solutions (e.g., upon switching from whole blood samples to aqueous calibrants). One approach to alleviate this problem is to use an intermediate salt bridge, with a solution (in the bridge) of ions of nearly equal mobility (e.g., concentrated KC1). Standard solutions with an electrolyte composition similar to that of the sample are also desirable. These precautions, however, will not eliminate the problem completely. Other approaches to address this and other changes in the cell constant have been reviewed (13). [Pg.147]

Salt, concentration in natural waters. . 281/ Salt electrolyte composition,... [Pg.472]

Over the past 10 years it has been demonstrated by a variety of in situ and ex situ techniques187,188 485 487 488 534 that flame-annealed Au faces are reconstructed in the same way as the surfaces of samples prepared in UHV,526-534 and that the reconstructed surfaces are stable even in contact with an aqueous solution if certain precautions are taken with respect to the potential applied and the electrolyte composition 485,487,488 A comprehensive review of reconstruction phenomena at single-crystal faces of various metals has been given by Kolb534 and Gao etal.511,513... [Pg.82]

The results cited in this section indeed appear very promising and encouraging, but there are still many problems to solve. Chemical and optical yields are extremely sensitive to experimental conditions such as current density and electrolyte composition Some experimental details in the asymmetric reduction of citraconic acid are indeed puzzling, such as a temperature maximum of the optical yield, and the fact the same product enantiomer is formed regardless if D or l polyvaline was used... [Pg.73]

In this method " - the melt eontains boric oxide and the metal oxide in a suitable electrolyte, usually an alkali or alkaline-earth halide or fluoroborate. The cell is operated at 700-1000 C depending on electrolyte composition. To limit corrosion, the container serving as cathode is made of mild steel or of the metal whose boride is sought. The anode is graphite or Fe. Numerous borides are prepared in this way, e.g., alkaline-earth and rare-earth hexaborides " and transition-metal borides, e.g, TiBj NijB, NiB and TaB... [Pg.263]

Plasma consists of water, electrolytes, metabolites, nutrients, proteins, and hormones. The water and electrolyte composition of plasma is practically the same as that of ail extracellular fluids. Laboratory determinations of levels of Na, K+, Ca, CL, HC03, PaC02, and of blood pH are important in the management of many patients. [Pg.580]

Closely akin to the subject of emulsions is the field of foams, mentioned only in passing. The two fields are similar, in that their properties both depend on surface effects, changes in interfacial tension, electrolyte composition, and manner of preparation. [Pg.71]

Depending on electrolyte composition, the metal will either dissolve in the anodic reaction, that is, form solution ions [reaction (1.24)], or will form insoluble or poorly soluble salts or oxides precipitating as a new solid phase next to the electrode surface [reaction (1.28)]. Reacting metal electrodes forming soluble products are also known as electrodes of the first kind, and those forming solid products are known as electrodes of the second kind. [Pg.16]

Figure 12.12 Kinetics of the (2 x 2) —3CO - ( /l9 xvT9)R23.4° — 13CO phase transition on a Pt( 111) electrode in a CO-saturated 0.1M H2SO4 electrolyte, observed via SFG of atop CO. The frequency shift data in (b) and (e) indicate that a new potential is estabhshed on the electrode within 0.2 s. The forward transformation is much slower than the reverse. There are minimal differences between the first and second cycles, indicating minimal change in electrolyte composition during kinetic measurements. Figure 12.12 Kinetics of the (2 x 2) —3CO - ( /l9 xvT9)R23.4° — 13CO phase transition on a Pt( 111) electrode in a CO-saturated 0.1M H2SO4 electrolyte, observed via SFG of atop CO. The frequency shift data in (b) and (e) indicate that a new potential is estabhshed on the electrode within 0.2 s. The forward transformation is much slower than the reverse. There are minimal differences between the first and second cycles, indicating minimal change in electrolyte composition during kinetic measurements.
This isotonic volume expander contains sodium, potassium, chloride, and lactate that approximates the fluid and electrolyte composition of the blood. Ringer s lactate (also known as lactated Ringer s or LR) provides ECF replacement and is most often used in the perioperative setting, and for patients with lower GI fluid losses, burns, or dehydration. The lactate component of LR works as a buffer to increase the pH. Large volumes of LR may cause metabolic alkalosis. Because patients with significant liver disease are unable to metabolize lactate sufficiently, Ringer s lactate administration in this population may lead to accumulation of lactate with iatrogenic lactic acidosis. The lactate is not metabolized to bicarbonate in the presence of liver disease and lactic acid can result. [Pg.406]

CE has been used for the analysis of anionic surfactants [946,947] and can be considered as complementary to HPLC for the analysis of cationic surfactants with advantages of minimal solvent consumption, higher efficiency, easy cleaning and inexpensive replacement of columns and the ability of fast method development by changing the electrolyte composition. Also the separation of polystyrene sulfonates with polymeric additives by CE has been reported [948]. Moreover, CE has also been used for the analysis of polymeric water treatment additives, such as acrylic acid copolymer flocculants, phosphonates, low-MW acids and inorganic anions. The technique provides for analyst time-savings and has lower detection limits and improved quantification for determination of anionic polymers, compared to HPLC. [Pg.278]

In oxidative polarography there is still the difficulty of a considerably limited potential range owing to dissolution of the mercury itself with a direct dependence on the electrolyte composition this is well illustrated in Fig. 3.26 for the following electrode reactions of Hg ... [Pg.149]

The potential-decay method can be included in this group. Either a current is passed through the electrode for a certain period of time or the electrode is simply immersed in the solution and the dependence of the electrode potential on time is recorded in the currentless state. At a given electrolyte composition, various cathodic and anodic processes (e.g. anodic dissolution of the electrode) can proceed at the electrode simultaneously. The sum of their partial currents plus the charging current is equal to zero. As concentration changes thus occur in the electrolyte, the rates of the partial electrode reactions change along with the value of the electrode potential. The electrode potential has the character of a mixed potential (see Section 5.8.4). [Pg.311]

Fig. 5.55 Different paths of anodic oxidation dependent on electrolyte composition. (According to L. E. Eberson and N. L. Weinberg)... Fig. 5.55 Different paths of anodic oxidation dependent on electrolyte composition. (According to L. E. Eberson and N. L. Weinberg)...
Skotheim et al. [286, 357, 362] have performed in situ electrochemistry and XPS measurements using a solid polymer electrolyte (based on poly (ethylene oxide) (PEO) [363]), which provides a large window of electrochemical stability and overcomes many of the problems associated with UHV electrochemistrty. The use of PEO as an electrolyte has also been investigated by Prosperi et al. [364] who found slow diffusion of the dopant at room temperature as would be expected, and Watanabe et al. have also produced polypyrrole/solid polymer electrolyte composites [365], The electrochemistry of chemically prepared polypyrrole powders has also been investigated using carbon paste electrodes [356, 366] with similar results to those found for electrochemically-prepared material. [Pg.47]

Table 3. Comparison of experimental and calculated equilibrium potentials for various gas environments and electrolyte compositions, 400 °C, relative to Ag/Ag+ reference. Results are reported on the basis of changes in the equilibrium potential relative to a base case of pure potassium pyrosulfate under an air environment. Table 3. Comparison of experimental and calculated equilibrium potentials for various gas environments and electrolyte compositions, 400 °C, relative to Ag/Ag+ reference. Results are reported on the basis of changes in the equilibrium potential relative to a base case of pure potassium pyrosulfate under an air environment.

See other pages where Electrolytes, composite is mentioned: [Pg.2725]    [Pg.510]    [Pg.175]    [Pg.2413]    [Pg.219]    [Pg.229]    [Pg.232]    [Pg.361]    [Pg.136]    [Pg.188]    [Pg.439]    [Pg.447]    [Pg.609]    [Pg.35]    [Pg.437]    [Pg.87]    [Pg.220]    [Pg.329]    [Pg.334]    [Pg.630]    [Pg.826]    [Pg.201]    [Pg.389]   
See also in sourсe #XX -- [ Pg.84 , Pg.430 ]




SEARCH



Electrolyte composition

© 2024 chempedia.info