Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetics electroless deposition

Electroless deposition as we know it today has had many applications, e.g., in corrosion prevention [5-8], and electronics [9]. Although it yields a limited number of metals and alloys compared to electrodeposition, materials with unique properties, such as Ni-P (corrosion resistance) and Co-P (magnetic properties), are readily obtained by electroless deposition. It is in principle easier to obtain coatings of uniform thickness and composition using the electroless process, since one does not have the current density uniformity problem of electrodeposition. However, as we shall see, the practitioner of electroless deposition needs to be aware of the actions of solution additives and dissolved O2 gas on deposition kinetics, which affect deposit thickness and composition uniformity. Nevertheless, electroless deposition is experiencing increased interest in microelectronics, in part due to the need to replace expensive vacuum metallization methods with less expensive and selective deposition methods. The need to find creative deposition methods in the emerging field of nanofabrication is generating much interest in electroless deposition, at the present time more so as a useful process however, than as a subject of serious research. [Pg.226]

A discussion of the applicability of the MPT model to a particular electroless system ideally presumes knowledge of the kinetics and mechanisms of the anodic and cathodic partial reactions, and experimental verification of the interdependence or otherwise of these reactions. However, the study of the kinetics, catalysis, and mechanistic aspects of electroless deposition is an involved subject and is discussed separately. [Pg.230]

Donahue [37] was one of the first to discuss interactions between partial reactions in electroless systems, specifically electroless Ni with NaH2PC>2 reducing agent, where mention was made of an interaction between H2PO2 ions and the cathodic Ni2+ reduction reaction with a calculated reaction order of 0.7. Donahue also derived some general relationships that may be used as diagnostic criteria in determining if interactions exist between the partial reactions in an electroless solution. Many electroless deposition systems have been reported to not follow the MPT model. However, mention of these solutions may be best left to a discussion of the kinetics and mechanism of electroless deposition, since a study of the latter is usually necessary to understand the adherence or otherwise of an electroless solution to the MPT model. [Pg.232]

Many factors influence the deposition kinetics of P and B, including metal ion and complexant concentrations, solution pH, and temperature. Though unavoidable side products of the electroless deposits, P and B impart unique properties to electroless deposits, e.g., good corrosion resistance in the case of Ni-P deposits, where the P content can exceed 30 at% in certain solutions [10, 11],... [Pg.237]

The incorporation of a third element, e.g. Cu, in electroless Ni-P coatings has been shown to improve thermal stability and other properties of these coatings [99]. Chassaing et al. [100] carried out an electrochemical study of electroless deposition of Ni-Cu-P alloys (55-65 wt% Ni, 25-35 wt% Cu, 7-10 wt% P). As mentioned earlier, pure Cu surfaces do not catalyze the oxidation of hypophosphite. They observed interactions between the anodic and cathodic processes both reactions exhibited faster kinetics in the full electroless solutions than their respective half cell environments (mixed potential theory model is apparently inapplicable). The mechanism responsible for this enhancement has not been established, however. It is possible that an adsorbed species related to hypophosphite mediates electron transfer between the surface and Ni2+ and Cu2+, rather in the manner that halide ions facilitate electron transfer in other systems, e.g., as has been recently demonstrated in the case of In electrodeposition from solutions containing Cl [101]. [Pg.254]

Bangwei et al. [107] studied the influence of solution variables on the electroless deposition of Ni-W-P. Using citric acid as a complexant for both Ni2+ and WO j [67], they observed maxima as a function of WO concentration in solution in the P and W contents of the deposits (Fig. 10(a)) and kinetics of electroless deposition (Fig. 10(b)) the influence of citric acid on these three quantities is shown in Figs. 10(c) and 10(d). The increase in deposition rate with WO concentration may be due to consumption, through complexation, of citrate by WO, thereby increasing the concentration of the reactive uncomplexed Ni2+ ions. An increase in deposition rate with WO4- concentration was also observed by Osaka et al. [108], The rapid decrease in P and W compositions at concentrations greater than 0.05 mol dm-3... [Pg.256]

Figure 14 shows a schematic representation of a mixed potential diagram for the electroless deposition reaction. Oxidation of the reductant, in this case hypophos-phite, is considered to be under 100% kinetic control. A mixed kinetic-diffusion curve is shown for the reduction of the metal ion, in our case Co2+, in the region close to the mixed potential, Em. Thus, since Co deposition occurs under a condition of mixed kinetic and diffusion control, features small relative to the diffusion layer thickness for Co2+ will experience a higher concentration of the metal ion, and hence... [Pg.263]

The O2 reduction reaction affects not only the steady-state deposition kinetics, but also the initiation of deposition, the so-called induction time [126, 127], At the beginning of the deposition process, the open circuit potential (Eoc) of either a uniformly catalytically active substrate, or a catalyst particle on an insulator, will be higher than that required for electroless deposition to occur. This is a consequence of the surface of the catalyst being covered with O or OH species which mask the catalytic activity of the surface the value of would be expected to be in the range of... [Pg.266]

As discussed earlier, it is generally observed that reductant oxidation occurs under kinetic control at least over the potential range of interest to electroless deposition. This indicates that the kinetics, or more specifically, the equivalent partial current densities for this reaction, should be the same for any catalytically active feature. On the other hand, it is well established that the O2 electroreduction reaction may proceed under conditions of diffusion control at a few hundred millivolts potential cathodic of the EIX value for this reaction even for relatively smooth electrocatalysts. This is particularly true for the classic Pd initiation catalyst used for electroless deposition, and is probably also likely for freshly-electrolessly-deposited catalysts such as Ni-P, Co-P and Cu. Thus, when O2 reduction becomes diffusion controlled at a large feature, i.e., one whose dimensions exceed the O2 diffusion layer thickness, the transport of O2 occurs under planar diffusion conditions (except for feature edges). [Pg.267]

Here F is the Faraday constant C = concentration of dissolved O2, in air-saturated water C = 2.7 x 10-7 mol cm 3 (C will be appreciably less in relatively concentrated heated solutions) the diffusion coefficient D = 2 x 10-5 cm2/s t is the time (s) r is the radius (cm). Figure 16 shows various plots of zm(02) vs. log t for various values of the microdisk electrode radius r. For large values of r, the transport of O2 to the surface follows a linear type of profile for finite times in the absence of stirring. In the case of small values of r, however, steady-state type diffusion conditions apply at shorter times due to the nonplanar nature of the diffusion process involved. Thus, the partial current density for O2 reduction in electroless deposition will tend to be more governed by kinetic factors at small features, while it will tend to be determined by the diffusion layer thickness in the case of large features. [Pg.267]

In this chapter we discuss the electrochemical model of electroless deposition (Sections 8.2 and 8.3), kinetics and mechanism of partial reactions (Sections 8.4 and 8.5), activation of noncatalytic surfaces (Section 8.6), kinetics of electroless deposition (Section 8.7), the mechanism of electroless crystallization (Section 8.8), and unique properties of some deposits (Section 8.9). [Pg.140]

After discussing adsorption, we discuss the effects of additives on the kinetic parameters of the deposition process and on the elementary processes of crystal growth. The general effect of additives on electroless deposition is discussed in Section 8.4. [Pg.177]

The book is divided into 18 chapters, presented in a logical and practical order as follows. After a brief introduction (Chapter 1) comes the discussion of ionic solutions (Chapter 2), followed by the subjects of metal surfaces (Chapter 3) and metal solution interphases (Chapter 4). Electrode potential, deposition kinetics, and thin-fihn nucleation are the themes of the next three chapters (5-7). Next come electroless and displacement-type depositions (Chapter 8 and 9), followed by the chapters dealing with the effects of additives and the science and technology of alloy deposition... [Pg.387]

There are four types of fundamental subjects involved in the process represented by Eq. (1.1) (1) metal-solution interface as the locus of the deposition process, (2) kinetics and mechanism of the deposition process, (3) nucleation and growth processes of the metal lattice (M a[tice), and (4) structure and properties of the deposits. The material in this book is arranged according to these four fundamental issues. We start by considering the basic components of an electrochemical cell for deposition in the first three chapters. Chapter 2 treats water and ionic solutions Chapter 3, metal and metal surfaces and Chapter 4, the metal-solution interface. In Chapter 5 we discuss the potential difference across an interface. Chapter 6 contains presentation of the kinetics and mechanisms of electrodeposition. Nucleation and growth of thin films and formation of the bulk phase are treated in Chapter 7. Electroless deposition and deposition by displacement are the subject of Chapters 8 and 9, respectively. Chapter 10 contains discussion on the effects of additives in the deposition and nucleation and growth processes. Simultaneous deposition of two or more metals, alloy deposition, is discussed in Chapter 11. The manner in which... [Pg.2]


See other pages where Kinetics electroless deposition is mentioned: [Pg.237]    [Pg.238]    [Pg.241]    [Pg.249]    [Pg.249]    [Pg.257]    [Pg.259]    [Pg.264]    [Pg.264]    [Pg.266]    [Pg.270]    [Pg.2]    [Pg.157]    [Pg.151]    [Pg.151]    [Pg.153]    [Pg.155]    [Pg.202]    [Pg.203]    [Pg.206]    [Pg.214]    [Pg.214]    [Pg.222]    [Pg.224]   
See also in sourсe #XX -- [ Pg.157 , Pg.158 , Pg.159 , Pg.160 , Pg.161 ]

See also in sourсe #XX -- [ Pg.151 , Pg.152 , Pg.153 , Pg.154 ]




SEARCH



Deposit kinetics

Deposition kinetics

Steady-state kinetics, electroless deposition

© 2024 chempedia.info