Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrokinetics electric double layer

The 2eta potential (Fig. 8) is essentially the potential that can be measured at the surface of shear that forms if the sohd was to be moved relative to the surrounding ionic medium. Techniques for the measurement of the 2eta potentials of particles of various si2es are collectively known as electrokinetic potential measurement methods and include microelectrophoresis, streaming potential, sedimentation potential, and electro osmosis (19). A numerical value for 2eta potential from microelectrophoresis can be obtained to a first approximation from equation 2, where Tf = viscosity of the liquid, e = dielectric constant of the medium within the electrical double layer, = electrophoretic velocity, and E = electric field. [Pg.44]

Overbeek, JTG Bijsterbosch, BH, The Electrical Double Layer and the Theory of Electrophoresis. In Electrokinetic Separation Methods Righetti, PG van Oss, CJ Vanderhoff, JW, eds. Elsevier/North-Holland Biomedical Press , 1979 1. [Pg.618]

Electric double layers are formed in heterogeneous electrochemical systems at interfaces between the electrolyte solution and other condncting or nonconducting phases this implies that charges of opposite sign accumnlate at the surfaces of the adjacent phases. When an electric held is present in the solntion phase which acts along snch an interface, forces arise that produce (when this is possible) a relative motion of the phases in opposite directions. The associated phenomena historically came to be known as electrokinetic phenomena or electrokinetic processes. These terms are not very fortunate, since a similar term, electrochemical kinetics, commonly has a different meaning (see Part 11). [Pg.595]

Transport processes of this type are called nonfaradaic transport. The nonfaradaic transport considered here is a steady-state process, in contrast to nonfaradaic currents mentioned previously that were due, for example, to charging of the electric double layer. Electrokinetic processes are of great practical significance, as discussed in Section 31.3. [Pg.597]

The charges present on the insulator surface in contact with the solution give rise to an accumulation of ions of opposite sign in the solution layer next to the surface, and thus formation of an electric double layer. Since straightforward electrochemical measurements are not possible at insulator surfaces, the only way in which this EDL can be characterized quantitatively is by measuring the values of the zeta potential in electrokinetic experiments (see Section 31.2). [Pg.599]

In 1873, Gabriel Lippmann (1845-1921 Nobel prize, 1908) performed extensive experiments of the electrocapiUary behavior of mercury and established his equation describing the potential dependence of the surface tension of mercury in solutions. In 1853, H. Helmholtz, analyzing electrokinetic phenomena, introduced the notion of a capacitor-like electric double layer on the surface of electrodes. These publications... [Pg.695]

The adsorption of ions at insulator surfaces or ionization of surface groups can lead to the formation of an electrical double layer with the diffuse layer present in solution. The ions contained in the diffuse layer are mobile while the layer of adsorbed ions is immobile. The presence of this mobile space charge is the source of the electrokinetic phenomena.t Electrokinetic phenomena are typical for insulator systems or for a poorly conductive electrolyte containing a suspension or an emulsion, but they can also occur at metal-electrolyte solution interfaces. [Pg.253]

A further electrokinetic phenomenon is the inverse of the former according to the Le Chatelier-Brown principle if motion occurs under the influence of an electric field, then an electric field must be formed by motion (in the presence of an electrokinetic potential). During the motion of particles bearing an electrical double layer in an electrolyte solution (e.g. as a result of a gravitational or centrifugal field), a potential difference is formed between the top and the bottom of the solution, called the sedimentation potential. [Pg.254]

Flow movement also has a relationship with the electrokinetic phenomenon, which can promote or retard the motion of the fluid constituents. Electrokinetic effects can be described as when an electrical double layer exists at an interface between a mobile phase and a stationary phase. A relative movement of the two phases can be induced by applying an electric field and, conversely, an induced relative movement of the two will give rise to a measurable potential difference.33... [Pg.700]

The mechanism of interaction of amino acids at solid/ aqueous solution interfaces has been investigated through adsorption and electrokinetic measurements. Isotherms for the adsorption of glutamic acid, proline and lysine from aqueous solutions at the surface of rutile are quite different from those on hydroxyapatite. To delineate the role of the electrical double layer in adsorption behavior, electrophoretic mobilities were measured as a function of pH and amino acid concentrations. Mechanisms for interaction of these surfactants with rutile and hydroxyapatite are proposed, taking into consideration the structure of the amino acid ions, solution chemistry and the electrical aspects of adsorption. [Pg.311]

Even allowing for the fact that the Debye-Hiickel approximation applies only for low potentials, the above analysis reveals some features of the electrical double layer that are general and of great importance as far as stability with respect to coagulation of dispersions and electrokinetic phenomena are concerned. In summary, three specific items might be noted ... [Pg.515]

The word electrokinetic implies the combined effects of motion and electrical phenomena. Specifically, our interest in this chapter centers on those processes in which a relative velocity exists between two parts of the electrical double layer. This may arise from the migration of a particle relative to the continuous phase that surrounds it. Alternatively, it could be the solution phase that moves relative to stationary walls. [Pg.534]

The surface of shear is the location within the electrical double layer at which the various electrokinetic phenomena measure the potential. We saw in Chapter 11 how the double layer extends outward from a charged wall. The potential at any particular distance from the wall can, in principle, be expressed in terms of the potential at the wall and the electrolyte content of the solution. In terms of electrokinetic phenomena, the question is How far from the interface is the surface of shear situated and what implications does this have on the relation between measured zeta potential and the surface potential ... [Pg.555]

Chapters 11-13 of the second edition, which discussed van der Waals forces (old Chapter 11), electrical double layers (old Chapter 12), electrokinetic phenomena (old Chapter 13), and colloid stability (old Chapters 11 and 12), have been restructured and new materials on colloid stability and polymer/colloid interactions have been added. For example ... [Pg.682]

Chapters 11 and 12 in the present edition focus exclusively on the theories of electrical double layers and forces due to double-layer interactions (Chapter 11) and electrokinetic phenomena (Chapter 12). Chapter 11 includes expressions for interacting spherical double layers, and both chapters provide additional examples of applications of the concepts covered. [Pg.683]

Electrokinetic is the general description applied to four phenomena which arise when attempts are made to shear off the mobile part of the electric double layer from a charged surface. [Pg.189]

Electrokinetic phenomena are only directly related to the nature of the mobile part of the electric double layer and may, therefore, be interpreted only in terms of the zeta potential or the charge density at the surface of shear. No direct information is given about the potentials tf/0 and charge density at the surface of the material in question. [Pg.199]

Electrokinetic theory involves both the theory of the electric double layer and that of liquid flow, and is quite complicated. In this section the relation between electrokinetically determined quantities (particularly electrophoretic mobility) and the zeta potential will be considered. [Pg.199]

Electrokinetic measurements at 25°C on silver iodide in 10 3 mol dm-3 aqueous potassium nitrate give d /d(pAg) = -35 mV at the zero point of charge. Assuming no specific adsorption of K+ or NO3 ions and no potential drop within the solid, estimate the capacity of the inner part of the electric double layer. Taking the thickness of the inner part of the double layer to be 0.4 nm, what value for the dielectric constant near to the interface does this imply Comment on the result. [Pg.284]

This electrokinetically driven micro mixer uses localized capacitance effects to induce zeta potential variations along the surface of silica-based micro channels [92], The zeta potential variations are given near the electrical double layer region of the electroosmotic flow utilized for species transport. Shielded ( buried ) electrodes are placed underneath the channel structures for the fluid flow in separate channels, i.e. they are not exposed to the liquid. The potential variations induce flow velocity changes in the fluid and thus promote mixing [92],... [Pg.13]

Electrical double layer properties at the solid/electrolyte solution interface were analyzed by potentiometric titration and electrophoresis measurements. Potentiometric titration and electrokinetic measurements were performed for three different concentrations 1 x 10 3, 1 x 10 2, and 1 x 10 1 M of NaClCXt solutions. The initial concentrations of Cd(II) and oxalate or citrate ions were 1 x 10 6, 1 x 105, 1 x 10 4, and 1 x 10 3 M, respectively. Double distilled water was used to prepare all solutions. All reagents used for experiments were analytical grade. [Pg.385]

The electrical double layer at the metal oxide/electrolyte solution interface can be described by characteristic parameters such as surface charge and electrokinetic potential. Metal oxide surface charge is created by the adsorption of electrolyte ions and potential determining ions (H+ and OH-).9 This phenomenon is described by ionization and complexation reactions of surface hydroxyl groups, and each of these reactions can be characterized by suitable constants such as pKa , pKa2, pKAn and pKct. The values of the point of zero charge (pHpzc), the isoelectric point (pH ep), and all surface reaction constants for the measured oxides are collected in Table 1. [Pg.385]

At the beginning, the electric double layer at the solid-aqueous electrolyte solution interface was characterized by the measurements of the electrokinetic potential and stability of dispersed systems. Later, the investigations were supported by potentiometric titration of the suspension, adsorption and calorimetric measurements [2]. Now, much valuable information on the mechanism of the ion adsorption can be obtained by advanced spectroscopic methods (especially infrared ATR and diffuse spectroscopy) [3], Mosbauer spectroscopy [4] and X-ray spectroscopy [5]. Some data concerning the interface potential were obtained with MOSFET [6], and AFM [7]. An enthalpy of the reaction of the metal oxide-solution systems can be obtained by... [Pg.136]

The structure electrical double layer at the silica-aqueous electrolyte interface was one of the earlier examined of the oxide systems. At the beginning the investigations were performed with application of electrokinetic methods next, with potentiometric titrations. The properties of this system were very important for flotation in mineral processing. Measurements proved that pHpZC and pHiep are equal to 3, but presence of some alkaline or acidic contaminants may change the position of these points on pH scale. Few examples, concerning edl parameters are shown in Table 3. Presented data concern a group of systems of different composition of the liquid phase and solid of a different origin. The latest measurements of this system takes into account the kinetics of the silica dissolution [152], and at zeta measurements, also the porosity of dispersed solid [155]. [Pg.186]

Finally we shall argue that present-day theories of the nonprimitive models of the electric double layer have considerable difficulty in treating properly ion adsorption in the Stern inner region at metal-aqueous electrolyte interfaces and we suggest that this region is a useful concept which should not be dismissed as unphysical. Indeed Stern-like inner region models continue to be used in colloid and electrochemical science, for example in theories of electrokinetics and aqueous-non-metallic (e.g., oxide) interfaces. [Pg.630]

In electrokinetic phenomena such as electroacoustics, theoretical models need to consider the induced movement of charge within the electrical double layer (EDL), the surface current , Is, as well as the interaction of the outer portion of the double layer with the applied signal (acoustic or electric field) and with the liquid medium. Hydrodynamic flows generate surface current as liquid moving relative to the particle... [Pg.291]

Many more-sophisticated models have been put forth to describe electrokinetic phenomena at surfaces. Considerations have included distance of closest approach of counterions, conduction behind the shear plane, specific adsorption of electrolyte ions, variability of permittivity and viscosity in the electrical double layer, discreteness of charge on the surface, surface roughness, surface porosity, and surface-bound water [7], Perhaps the most commonly used model has been the Gouy-Chapman-Stem-Grahame model 8]. This model separates the counterion region into a compact, surface-bound Stern" layer, wherein potential decays linearly, and a diffuse region that obeys the Poisson-Boltzmann relation. [Pg.119]


See other pages where Electrokinetics electric double layer is mentioned: [Pg.150]    [Pg.178]    [Pg.102]    [Pg.8]    [Pg.421]    [Pg.233]    [Pg.232]    [Pg.500]    [Pg.623]    [Pg.154]    [Pg.178]    [Pg.174]    [Pg.185]    [Pg.74]    [Pg.178]    [Pg.249]    [Pg.136]    [Pg.351]    [Pg.291]   
See also in sourсe #XX -- [ Pg.149 ]




SEARCH



Electric double layer

Electrical double layer

Electrical/electrically double-layer

Electrokinetic

Electrokinetics)

© 2024 chempedia.info