Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemical methods techniques

In potentiometry, the potential of an electrochemical cell under static conditions is used to determine an analyte s concentration. As seen in the preceding section, potentiometry is an important and frequently used quantitative method of analysis. Dynamic electrochemical methods, such as coulometry, voltammetry, and amper-ometry, in which current passes through the electrochemical cell, also are important analytical techniques. In this section we consider coulometric methods of analysis. Voltammetry and amperometry are covered in Section 1 ID. [Pg.496]

The biological and medical sciences are ripe for iastmmentation advances. Whereas most immunoassays (qv) use radioactive materials, the implementation of chemiluminescent methods, enzyme techniques, and electrochemical methods is expected to become more important. New and better noninvasive methods of iavestigation are expected to become more routine. In addition, real-time measurements, whereby analyses of a number of... [Pg.397]

Therefore, hplc methods seem more effective. By usiag a combiaed uv and electrochemical detection technique (52), the gem-chlotinated cyclohexadienones, the chlorophenols, and the phenoxyphenols present ia the chlorination mixtures can be determined with great accuracy. [Pg.81]

A simple electrochemical flow-through cell with powder carbon as cathodic material was used and optimized. The influence of the generation current, concentration of the catholyte, carrier stream, flow rate of the sample and interferences by other metals on the generation of hydrogen arsenide were studied. This system requires only a small sample volume and is very easily automatized. The electrochemical HG technique combined with AAS is a well-established method for achieving the required high sensitivity and low detection limits. [Pg.135]

Developments in electrochemical methods since 1976 for measurement of corrosion have been rapid. Research and development has produced several new techniques, e.g. a.c. impedance and electrochemical noise. These methods require corrosion expertise for both operation and interpretation. Industry generally prefers instrumentation that can be operated by process... [Pg.1129]

Electrochemical analytical techniques are a class of titration methods which in turn can be subdivided into potentiometric titrations using ion-selective electrodes and polarographic methods. Polarographic methods are based on the suppression of the overpotential associated with oxygen or other species in the polarographic cell caused by surfactants or on the effect of surfactants on the capacitance of the electrode. One example of this latter case is the method based on the interference of anionic surfactants with cationic surfactants, or vice versa, on the capacitance of a mercury drop electrode. This interference can be used in the one-phase titration of sulfates without indicator to determine the endpoint... [Pg.281]

The Volta potential is defined as the difference between the electrostatic outer potentials of two condensed phases in equilibrium. The measurement of this and related quantities is performed using a system of voltaic cells. This technique, which in some applications is called the surface potential method, is one of the oldest but still frequently used experimental methods for studying phenomena at electrified solid and hquid surfaces and interfaces. The difficulty with the method, which in fact is common to most electrochemical methods, is lack of molecular specificity. However, combined with modem surface-sensitive methods such as spectroscopy, it can provide important physicochemical information. Even without such complementary molecular information, the voltaic cell method is still the source of much basic electrochemical data. [Pg.13]

Electrochemical as well as nonelectrochemical techniques are used when studying these aspects. Electrochemical techniques are commonly used, too, in chemical analysis, in determining the properties of various substances and for other purposes. The nonelectrochemical techniques include chemical (determining the identity and quantity of reaction products), radiotracer, optical, spechal, and many other physical methods. Sometimes these methods are combined with electrochemical methods for instance, when studying the optical properties of an electrode surface while this is polarized. Nonelectrochemical techniques are described in more detail in Chapter 27. [Pg.191]

Other important alternate electrochemical methods under study for pCO rely on measuring current associated with the direct reduction of CO. The electrochemistry of COj in both aqueous and non-aqueous media has been documented for some time 27-29) interferences from more easily reduced species such as O2 as well as many commonly used inhalation anesthetics have made the direct amperometric approach difficult to implement. One recently described attempt to circumvent some of these interference problems employs a two cathode configuration in which one electrode is used to scrub the sample of O by exhaustive reduction prior to COj amperometry at the second electrode. The response time and sensitivity of the approach may prove to be adequate for blood ps applications, but the issue of interfering anesthetics must be addressed more thorou ly in order to make the technique a truly viable alternative to the presently used indirect potentiometric electrode. [Pg.55]

Electroorganic Synthesis by Indirect Electrochemical Methods New Applications of Electrochemical Techniques ... [Pg.192]

Homogeneity was, and still is, determined for elements in RMs by various modes of e.g. NAA, XRF, AAS, ICP-AES, ICP-MS and electrochemical methods after decomposition see Section 3.2 and for organometallic and other compounds by combination of chromatographic techniques with these methods, see Section 3.3. [Pg.36]

Electrochemical methods such as potentiometry allow analyses up to p,gL quantities, or, with methods such as voltammetry, they extend into the micro-trace range. Table 8.74 compares potentiometry to other electroanalytical techniques. Potentiometry and ion-selective electrodes are described in various books [476-480],... [Pg.669]

Principles and Characteristics Voltammetric methods are electrochemical methods which comprise several current-measuring techniques involving reduction or oxidation at a metal-solution interface. Voltammetry consists of applying a variable potential difference between a reference electrode (e.g. Ag/AgCl) and a working electrode at which an electrochemical reaction is induced (Ox + ne ----> Red). Actually, the exper-... [Pg.669]

Table 8.76 shows the main characteristics of voltammetry. Trace-element analysis by electrochemical methods is attractive due to the low limits of detection that can be achieved at relatively low cost. The advantage of using standard addition as a means of calibration and quantification is that matrix effects in the sample are taken into consideration. Analytical responses in voltammetry sometimes lack the predictability of techniques such as optical spectrometry, mostly because interactions at electrode/solution interfaces can be extremely complex. The role of the electrolyte and additional solutions in voltammetry are crucial. Many determinations are pH dependent, and the electrolyte can increase both the conductivity and selectivity of the solution. Voltammetry offers some advantages over atomic absorption. It allows the determination of an element under different oxidation states (e.g. Fe2+/Fe3+). [Pg.670]

The electrode material and its pretreatment considerably influence the course of the electrode process. The importance of non-electrochemical methods is constantly increasing as a result of the development of experimental techniques. [Pg.302]

The determination of H202 is very important in many different fields, such as in clinical, food, pharmaceutical, and environmental analyses [202], Many techniques such as spectrophotometry, chemiluminesence, fluorimetry, acoustic emission, and electrochemistry methods have been employed to determine H202. Electrochemical methods are often used because of their advantages. Among these electrochemical methods, the construction of the mediator-free enzyme-based biosensors based on the direct electrochemistry of redox proteins has been reported over the past decade [203— 204], The enzyme-based biosensors, which use cyt c as biocatalyzer to catalyze H202, were widely studied. [Pg.574]

Other common techniques have been applied to the assembly of layers or films of TTF-derived molecular conductors. Compound 29 is an example of an amphiphilic TTF derivative. It forms conducting Langmuir-Blodgett charge transfer films with the acceptor TCNQF4 (30).98 Self-assembly of compound 31 on gold by electrochemical methods yielded an electroactive monolayer which was remarkably stable to electrochemical cycling.99... [Pg.778]

In virtually all of the simple immersion and two electrode experiments carried out so far, in-diffused H has been detected at the 1016/cm3 level or less. There has been no demonstration that large densities (> 1018/cm3) of defects can be passivated by these methods, and where plasma and electrochemical treatments have been directly compared, the former have been found to be more effective (Tavendale et al., 1986). In contrast to plasma techniques, the electrolyte boiling point limits the temperature range of electrochemical methods, although several hundred degrees Celsius can be utilized for electrolytes like H3P04. [Pg.43]

The development of surface-sensitive techniques. The classical electrochemical methods involve the measurement of potential and current. While these are extremely useful in the study of reaction rates and mechanisms, they give no information on the structure of the interface. A variety of surface-sensitive techniques has now been adapted to the electrochemical situation and applied to the investigation of electrode surface structure. [Pg.296]


See other pages where Electrochemical methods techniques is mentioned: [Pg.208]    [Pg.2429]    [Pg.297]    [Pg.210]    [Pg.1006]    [Pg.324]    [Pg.549]    [Pg.40]    [Pg.218]    [Pg.230]    [Pg.241]    [Pg.77]    [Pg.160]    [Pg.170]    [Pg.326]    [Pg.38]    [Pg.18]    [Pg.24]    [Pg.313]    [Pg.379]    [Pg.272]    [Pg.523]    [Pg.88]    [Pg.34]    [Pg.174]    [Pg.153]    [Pg.269]    [Pg.379]    [Pg.121]    [Pg.579]    [Pg.153]    [Pg.2]   
See also in sourсe #XX -- [ Pg.199 ]




SEARCH



Electrochemical methods

Electrochemical methods selective measuring techniques

Electrochemical techniques

Label-free detection methods electrochemical techniques

Method techniques

© 2024 chempedia.info