Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrocatalyst surface spectroscopy

Of special Interest as O2 reduction electrocatalysts are the transition metal macrocycles In the form of layers adsorptlvely attached, chemically bonded or simply physically deposited on an electrode substrate Some of these complexes catalyze the 4-electron reduction of O2 to H2O or 0H while others catalyze principally the 2-electron reduction to the peroxide and/or the peroxide elimination reactions. Various situ spectroscopic techniques have been used to examine the state of these transition metal macrocycle layers on carbon, graphite and metal substrates under various electrochemical conditions. These techniques have Included (a) visible reflectance spectroscopy (b) laser Raman spectroscopy, utilizing surface enhanced Raman scattering and resonant Raman and (c) Mossbauer spectroscopy. This paper will focus on principally the cobalt and Iron phthalocyanlnes and porphyrins. [Pg.535]

Reaction products can also be identified by in situ infrared reflectance spectroscopy (Fourier transform infrared reflectance spectroscopy, FTIRS) used as single potential alteration infrared reflectance spectroscopy (SPAIRS). This method is suitable not only for obtaining information on adsorbed products (see below), but also for observing infrared (IR) absorption bands due to the products immediately after their formation in the vicinity of the electrode surface. It is thus easy to follow the production of CO2 versus the oxidation potential and to compare the behavior of different electrocatalysts. [Pg.76]

The elemental composition, oxidation state, and coordination environment of species on surfaces can be determined by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) techniques. Both techniques have a penetration depth of 5-20 atomic layers. Especially XPS is commonly used in characterization of electrocatalysts. One common example is the identification and quantification of surface functional groups such as nitrogen species found on carbon-based catalysts.26-29 Secondary Ion Mass spectrometry (SIMS) and Ion Scattering Spectroscopy are alternatives which are more surface sensitive. They can provide information about the surface composition as well as the chemical bonding information from molecular clusters and have been used in characterization of cathode electrodes.30,31 They can also be used for depth profiling purposes. The quantification of the information, however, is rather difficult.32... [Pg.339]

Synchotron based techniques, such as surface X-ray scattering (SXS) and X-ray absorption spectroscopy (XAS), have found increased use in characterization of electrocatalysts during electrochemical reactions.37 These techniques, which can be used for characterization of surface structures, require intricate cell designs that can provide realistic electrochemical conditions while acquiring spectra. Several examples of the use of XAS and EXAFS in non-precious metal cathode catalysts can be found in the literature.38 2... [Pg.343]

As indicated above, the Ap technique has been applied to several other phenomena involving Pt-based electrocatalysts. The first report of Ap applied to operating Pt electrocatalysts was based on Hads at anodic potentials. The nature of Ha on Pt, and its contribution to the effective double layer, had long been a matter of debate. " Ap analysis of Pt Lmn XANES showed the H to be highly delocalized, and hopping between one-fold and three-fold (fee) sites on the Pt surface. While prior research had pointed to such activity, the realistic extent in respect to potential was murky due to the nature of the analytical techniques (e.g., IR spectroscopy, UHV studies, etc.) employed. The study by Teliska et al., ... [Pg.547]

XPS or AES is extensively used not only to indicate the cleanliness of the sample before transfer, but also to indicate the presence of adsorbates and their oxidation states following electrochemical experiments and transfer back into the UHV environment. In the case of model platinum-based electrocatalysts, the electron spectroscopies have been used to estimate the coverage of the adsorbate metal atoms or the alloy composition. In the case of alloys, or the nucleation and growth of metal adsorbate structures, the techniques give only the mean concentrations averaged over a depth determined by the inelastic mean free path of the emitted electrons. Adsorption and reaction at surfaces often depend on the... [Pg.198]

Another theory claims that a protective complex between the metal and the CP is formed in the metal-polymer interface. Kinlen et al. [73] found by electron spectroscopy chemical analysis (ESCA) that an iron-PANl complex in the intermediate layer between the steel surface and the polymer coating is formed. By isolating the complex, it was found that the complex has an oxidation potential 250 mV more positive than PANI. According to Kinlen et al. [73], this complex more readily reduces oxygen and produces a more efficient electrocatalyst. [Pg.401]

In order to get answers to these questions, the ability to better characterize catalysts and electrocatalysts in situ under actual reactor or cell operating conditions (i.e., operando conditions) with element specificity and surface sensitivity is crucial. However, there are very few techniques that lend themselves to the rigorous requirements in electrochemical and in particular fuel cell studies (Fig. 1). With respect to structure, in-situ X-ray diffraction (XRD) could be the method of choice, but it has severe limitations for very small particles. Fourier transform infra red (FTTR), " and optical sum frequency generation (SFG) directly reveal the adsorption sites of such probe molecules as CO," but cannot provide much information on the adsorption of 0 and OH. To follow both structure and adsorbates at once (i.e., with extended X-ray absorption fine stmcture (EXAFS) and X-ray absorption near edge stmc-ture (XANES), respectively), only X-ray absorption spectroscopy (XAS) has proven to be an appropriate technique. This statement is supported by the comparatively large number of in situ XAS studies that have been published during the last decade. 16,17,18,19,20,21,22,23,24,25 highly Versatile, since in situ measme-... [Pg.161]

Itmumerable mechanistic studies of alcohol oxidation on Pt-based electrocatalysts in acidic media have been published over the last few years. Methanol, " ethanol ° and ethylene glycol have been the most studied substrates and their oxidation paths on Pt or Pt alloys have been substantiated using a variety of in situ, extra situ and operando techniques as well as quantum mechanical calculations. The experimental techniques include reflection IR spectroscopy (IR), surface enhanced IR asbsorption spectroscopy (SEIRAS), " attemrated total reflection-IR absorption spectroscopy (ATR-IRAS), differential electrochemical mass spectroscopy (DEMS), single potential alteration IR spectroscopy... [Pg.245]

Babu et al. carried out Pt and C NMR and electrochemical experiments on commercial Pt—Ru alloy nanoparticles and compared the results with those on Pt-black samples having similar particle sizes, and concluded that alloying with Ru reduces the total density of states at the Pt sites, in accord with conclusions drawn from synchrotron X-ray absorption studies ofPt-Ru electrocatalysts [199]. The COj,d diffusion studied by C electrochemical NMR spectroscopy in the temperature range 253—293 K revealed that CO surface diffusion is too fast to be considered as the rate-Hmiting factor in methanol oxidation. The NMR experiments also demonstrated that the addition of Ru to Pt increases the surface diffusion rates of CO, and a... [Pg.197]


See other pages where Electrocatalyst surface spectroscopy is mentioned: [Pg.310]    [Pg.198]    [Pg.154]    [Pg.334]    [Pg.4]    [Pg.100]    [Pg.183]    [Pg.571]    [Pg.94]    [Pg.584]    [Pg.390]    [Pg.514]    [Pg.523]    [Pg.535]    [Pg.552]    [Pg.596]    [Pg.837]    [Pg.183]    [Pg.263]    [Pg.335]    [Pg.74]    [Pg.145]    [Pg.78]    [Pg.251]    [Pg.533]    [Pg.430]    [Pg.102]    [Pg.159]    [Pg.93]    [Pg.624]    [Pg.947]    [Pg.977]    [Pg.267]    [Pg.1479]    [Pg.1609]    [Pg.1917]    [Pg.203]    [Pg.313]    [Pg.315]   
See also in sourсe #XX -- [ Pg.304 , Pg.305 , Pg.306 , Pg.307 , Pg.308 ]




SEARCH



Electrocatalyst

Electrocatalysts

Surface spectroscopy

© 2024 chempedia.info