Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrical minerals

Electrically conductive rubber, 20 247 Electrically conductive resins, 7 7 840 Electrically stimulated drug delivery systems, 9 59-61, 81 Electrical mineral size reduction, 76 613 Electrical Patents Index (EPI), 18 222 Electrical properties... [Pg.301]

Used (particularly He, Ar) to provide an inert atmosphere, e.g. for welding, and in electric light bulbs, valves and discharge tubes (particularly Ne). Liquid He is used in cryoscopy. The amounts of He and Ar formed in minerals by radioactive decay can be used to determine the age of the specimen. Xe and to a lesser extent Kr and Rn have a chemistry the other noble gases do not form chemical compounds. [Pg.281]

This interface is critically important in many applications, as well as in biological systems. For example, the movement of pollutants tln-ough the enviromnent involves a series of chemical reactions of aqueous groundwater solutions with mineral surfaces. Although the liquid-solid interface has been studied for many years, it is only recently that the tools have been developed for interrogating this interface at the atomic level. This interface is particularly complex, as the interactions of ions dissolved in solution with a surface are affected not only by the surface structure, but also by the solution chemistry and by the effects of the electrical double layer [31]. It has been found, for example, that some surface reconstructions present in UHV persist under solution, while others do not. [Pg.314]

Spinel ferrites, isostmctural with the mineral spinel [1302-67-6] MgAl204, combine interesting soft magnetic properties with a relatively high electrical resistivity. The latter permits low eddy current losses in a-c appHcations, and based on this feature spinel ferrites have largely replaced the iron-based core materials in the r-f range. The main representatives are MnZn-ferrites (frequencies up to about 1 MH2) and NiZn-ferrites (frequencies 1 MHz). [Pg.187]

Two main operational variables that differentiate the flotation of finely dispersed coUoids and precipitates in water treatment from the flotation of minerals is the need for quiescent pulp conditions (low turbulence) and the need for very fine bubble sizes in the former. This is accompHshed by the use of electroflotation and dissolved air flotation instead of mechanically generated bubbles which is common in mineral flotation practice. Electroflotation is a technique where fine gas bubbles (hydrogen and oxygen) are generated in the pulp by the appHcation of electricity to electrodes. These very fine bubbles are more suited to the flotation of very fine particles encountered in water treatment. Its industrial usage is not widespread. Dissolved air flotation is similar to vacuum flotation. Air-saturated slurries are subjected to vacuum for the generation of bubbles. The process finds limited appHcation in water treatment and in paper pulp effluent purification. The need to mn it batchwise renders it less versatile. [Pg.52]

In 1840 a hydrauHc power network, which involved large reciprocating pumps that were driven by steam engines, suppHed fluid power to London. However, concurrent technology in steam (qv) turbines and the electric generators outmoded such networks until hydrauHc systems were improved with the use of rotary pumps and oil. The rotary piston pump marked the transition from use of water to oil as the hydrauHc fluid (4). The use of vacuum-distilled, refined mineral oils were instmmental in the success of rotary axial piston pumps and motors such as the Waterbury variable speed gear... [Pg.261]

Because the corrosion resistance of lead and lead alloys is associated with the formation of the protective corrosion film, removal of the film in any way causes rapid attack. Thus the velocity of a solution passing over a surface can lead to significantly increased attack, particularly if the solution contains suspended particulate material. Lead is also attacked rapidly in the presence of high velocity deionised water. The lack of dissolved minerals in such water prevents the formation of an insoluble protective film. In most solutions, lead and lead alloys are resistant to galvanic corrosion because of the formation of a nonconductive corrosion film. In contact with more noble metals, however, lead can undergo galvanic attack which is accelerated by stray electrical currents. [Pg.63]

Although the size separation/classification methods are adequate in some cases to produce a final saleable mineral product, in a vast majority of cases these produce Httle separation of valuable minerals from gangue. Minerals can be separated from one another based on both physical and chemical properties (Fig. 8). Physical properties utilized in concentration include specific gravity, magnetic susceptibility, electrical conductivity, color, surface reflectance, and radioactivity level. Among the chemical properties, those of particle surfaces have been exploited in physico-chemical concentration methods such as flotation and flocculation. The main objective of concentration is to separate the valuable minerals into a small, concentrated mass which can be treated further to produce final mineral products. In some cases, these methods also produce a saleable product, especially in the case of industrial minerals. [Pg.401]

Other Specialty Chemicals. In fuel-ceU technology, nickel oxide cathodes have been demonstrated for the conversion of synthesis gas and the generation of electricity (199) (see Fuel cells). Nickel salts have been proposed as additions to water-flood tertiary cmde-oil recovery systems (see Petroleum, ENHANCED oil recovery). The salt forms nickel sulfide, which is an oxidation catalyst for H2S, and provides corrosion protection for downweU equipment. Sulfur-containing nickel complexes have been used to limit the oxidative deterioration of solvent-refined mineral oils (200). [Pg.15]

Phosphorus [7723-14-0] is a nonmetaUic element having widespread occurrence in nature as phosphate compounds (see Phosphoric acid and phosphates). Fluorapatite [1306-03-4], Ca F(P0 2> is the primary mineral in phosphate rock ores from which useful phosphoms compounds (qv) ate produced. The recovery from the ore into commercial chemicals is accompHshed by two routes the electric furnace process, which yields elemental phosphoms and the wet acid process, which generates phosphoric acid. The former is discussed herein (see Furnaces, electric). Less than 10% of the phosphate rock mined in the world is processed in electric furnaces. Over 90% is processed by the wet process, used primarily to make fertilisers (qv). [Pg.347]

Transparent fused silica can be formed at a temperature of 1200°C and a pressure of 13.8 MPa (2000 psi) from silica powder consisting of 15 nm ultimate particles (92) or by electric arc fusion of pure silica sand having low iron and alkali metal contents. The cooled product is ground to the desired particle size. Fused sihca is primarily manufactured by C-E Minerals, Minco, and Precision Electro Minerals in the United States by Chuo Denko, Denki Kagaku Kogyo, NKK, Showa Denko, and Toshiba Ceramics in Japan. Based on 1988 data and projected growth, an estimated 135,000 metric tons of fused siUca were used in 1994 as a sacrificial component or investment casting in the manufacture of metals and as a component in refractory materials (62). [Pg.494]


See other pages where Electrical minerals is mentioned: [Pg.43]    [Pg.43]    [Pg.111]    [Pg.185]    [Pg.478]    [Pg.552]    [Pg.208]    [Pg.51]    [Pg.1014]    [Pg.12]    [Pg.225]    [Pg.186]    [Pg.187]    [Pg.44]    [Pg.45]    [Pg.288]    [Pg.333]    [Pg.358]    [Pg.437]    [Pg.489]    [Pg.163]    [Pg.396]    [Pg.402]    [Pg.403]    [Pg.410]    [Pg.410]    [Pg.391]    [Pg.2]    [Pg.304]    [Pg.305]    [Pg.348]    [Pg.166]    [Pg.300]    [Pg.448]    [Pg.449]    [Pg.536]    [Pg.43]    [Pg.25]    [Pg.253]    [Pg.518]   
See also in sourсe #XX -- [ Pg.56 ]




SEARCH



Electrical double layer mineral/water interfaces

Electrical properties mineral reinforcement

G Economic Data for Metals, Industrial Minerals and Electricity

Interface mineral/water, electric double layer

Mineral coupling, improved electrical

Mineral coupling, improved electrical properties

Mineral/water interfaces, electrical

Resistivity, electrical semiconducting minerals

© 2024 chempedia.info