Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrical double layer change

The treatment may be made more detailed by supposing that the rate-determining step is actually from species O in the OHP (at potential relative to the solution) to species R similarly located. The effect is to make fi dependent on the value of 2 and hence on any changes in the electrical double layer. This type of analysis has permitted some detailed interpretations to be made of kinetic schemes for electrode reactions and also connects that subject to the general one of this chapter. [Pg.214]

If the said hydrogen half-cell is part of a cell, the change in the electrical double layer will mean a change in the e.m.f. of the cell. [Pg.225]

According to experimental data,208,209 the SNIFTIR technique can be used to probe the electrical properties of the electrical double layer even in more concentrated solutions where cyclic voltammetry (cv), impedance, chronocoulometry, and other techniques are not applicable. Iwasita and Xia210 have used FTIR reflection-adsorption spectra to identify the potential at which the orientation of water molecules changes from hydrogen down to oxygen down. [Pg.41]

The electroviscous effect present with solid particles suspended in ionic liquids, to increase the viscosity over that of the bulk liquid. The primary effect caused by the shear field distorting the electrical double layer surrounding the solid particles in suspension. The secondary effect results from the overlap of the electrical double layers of neighboring particles. The tertiary effect arises from changes in size and shape of the particles caused by the shear field. The primary electroviscous effect has been the subject of much study and has been shown to depend on (a) the size of the Debye length of the electrical double layer compared to the size of the suspended particle (b) the potential at the slipping plane between the particle and the bulk fluid (c) the Peclet number, i.e., diffusive to hydrodynamic forces (d) the Hartmarm number, i.e. electrical to hydrodynamic forces and (e) variations in the Stern layer around the particle (Garcia-Salinas et al. 2000). [Pg.103]

The EMIRS and SNIFTIRS methods provide the IR vibrational spectra (really the difference spectra - see later) of all species whose population changes either on the electrode surface or in the electrical double layer or in the diffusion layer in response to changing the electrode potential. Spectra will also be obtained for adsorbed species whose population does not change but which undergo a change in orientation or for which the electrode potential alters the Intensity, the position or shape of IR absorption bands. Shifts in band maxima with potential at constant coverage (d nax 6 very common for adsorbed species and they provide valuable information on the nature of adsorbate/absorbent bonding and hence also additional data on adsorbate orientation. [Pg.552]

Studies of theadsorption of surface-active electrolytes at the oil,water interface provide a convenient method for testing electrical double-layer theory and for determining the state of water and ions in the neighborhood of an interface. The change in the surface amount of the large ions modifies the surface charge density. For instance, a surface ionic area of 100 per ion corresponds to 16 pC per square centimeter. " " ... [Pg.42]

The Nernst equation is of limited use at low absolute concentrations of the ions. At concentrations of 10 to 10 mol/L and the customary ratios between electrode surface area and electrolyte volume (SIV 10 cm ), the number of ions present in the electric double layer is comparable with that in the bulk electrolyte. Hence, EDL formation is associated with a change in bulk concentration, and the potential will no longer be the equilibrium potential with respect to the original concentration. Moreover, at these concentrations the exchange current densities are greatly reduced, and the potential is readily altered under the influence of extraneous effects. An absolute concentration of the potential-determining substances of 10 to 10 mol/L can be regarded as the limit of application of the Nernst equation. Such a limitation does not exist for low-equilibrium concentrations. [Pg.47]

The concept of surface concentration Cg j requires closer definition. At the surface itself the ionic concentrations will change not only as a result of the reaction but also because of the electric double layer present at the surface. Surface concentration is understood to be the concentration at a distance from the surface small compared to diffusion-layer thickness, yet so large that the effects of the EDL are no fonger felt. This condition usually is met at points about 1 nm from the surface. [Pg.56]

What was evident in 1950 was that very few surface-sensitive experimental methods had been brought to bear on the question of chemisorption and catalysis at metal surfaces. However, at this meeting, Mignolet reported data for changes in work function, also referred to as surface potential, during gas adsorption with a distinction made between Van der Waals (physical) adsorption and chemisorption. In the former the work function decreased (a positive surface potential) whereas in the latter it increased (a negative surface potential), thus providing direct evidence for the electric double layer associated with the adsorbate. [Pg.4]

It is assumed that the quantity Cc is not a function of the electrolyte concentration c, and changes only with the charge cr, while Cd depends both on o and on c, according to the diffuse layer theory (see below). The validity of this relationship is a necessary condition for the case where the adsorption of ions in the double layer is purely electrostatic in nature. Experiments have demonstrated that the concept of the electrical double layer without specific adsorption is applicable to a very limited number of systems. Specific adsorption apparently does not occur in LiF, NaF and KF solutions (except at high concentrations, where anomalous phenomena occur). At potentials that are appropriately more negative than Epzc, where adsorption of anions is absent, no specific adsorption occurs for the salts of... [Pg.224]

If the electrolyte components can react chemically, it often occurs that, in the absence of current flow, they are in chemical equilibrium, while their formation or consumption during the electrode process results in a chemical reaction leading to renewal of equilibrium. Electroactive substances mostly enter the charge transfer reaction when they approach the electrode to a distance roughly equal to that of the outer Helmholtz plane (Section 5.3.1). It is, however, sometimes necessary that they first be adsorbed. Similarly, adsorption of the products of the electrode reaction affects the electrode reaction and often retards it. Sometimes, the electroinactive components of the solution are also adsorbed, leading to a change in the structure of the electrical double layer which makes the approach of the electroactive substances to the electrode easier or more difficult. Electroactive substances can also be formed through surface reactions of the adsorbed substances. Crystallization processes can also play a role in processes connected with the formation of the solid phase, e.g. in the cathodic deposition of metals. [Pg.261]

The inhibition of electrode processes as a result of the adsorption of electroinactive surfactants has been studied in detail at catalytically inactive mercury electrodes. In contrast to solid metal electrodes where knowledge of the structure of the electrical double layer is small, it is often possible to determine whether the effect of adsorption on the electrode process at mercury electrodes is solely due to electrostatics (a change in potential 02)... [Pg.375]

Another point of importance about the film structure is the degree to which it can be permeated by various ions and molecules. It is of course essential that supporting electrolyte ions be able to penetrate the film, else the electrical double layer at the electrode/polymer interface could not be charged to potentials that drive electron transfers between the polymer and the electrode. The electroneutrality requirements of porphyrin sites as their electrical charges are changed by oxidation or reduction also could not be satisfied without electrolyte permeation. With the possible exception of the phenolic structure in Fig. 1, this level of permeability seems to be met by the ECP porphyrins. [Pg.412]

The second component of the overpotential, rjs, is associated with the passage of reacting species and electrons across the electric double layer, discharge of the reacting species, and changes in the electrode surface structure. Following Newman (N8a), this component is called the surface overpotential. It depends on the reaction rate, the species concentrations in the double layer, and the kinetic characteristics of the electrode reaction at the surface in question. [Pg.224]

How fast does an electric double layer in a biological interphase and the adjacent solution build up or adjust itself to changing conditions In other words, what are the characteristic time constants for formation of the inter-phasial double layer ... [Pg.120]


See other pages where Electrical double layer change is mentioned: [Pg.228]    [Pg.228]    [Pg.413]    [Pg.517]    [Pg.513]    [Pg.527]    [Pg.511]    [Pg.394]    [Pg.465]    [Pg.812]    [Pg.225]    [Pg.32]    [Pg.77]    [Pg.143]    [Pg.392]    [Pg.550]    [Pg.211]    [Pg.373]    [Pg.579]    [Pg.120]    [Pg.428]    [Pg.658]    [Pg.727]    [Pg.209]    [Pg.212]    [Pg.252]    [Pg.283]    [Pg.291]    [Pg.345]    [Pg.346]    [Pg.89]    [Pg.325]    [Pg.88]    [Pg.18]    [Pg.208]    [Pg.150]   
See also in sourсe #XX -- [ Pg.106 , Pg.107 , Pg.108 ]




SEARCH



Electric double layer

Electrical double layer

Electrical/electrically double-layer

© 2024 chempedia.info