Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electric field capacitor

Wlien an electrical coimection is made between two metal surfaces, a contact potential difference arises from the transfer of electrons from the metal of lower work function to the second metal until their Femii levels line up. The difference in contact potential between the two metals is just equal to the difference in their respective work fiinctions. In the absence of an applied emf, there is electric field between two parallel metal plates arranged as a capacitor. If a potential is applied, the field can be eliminated and at this point tire potential equals the contact potential difference of tlie two metal plates. If one plate of known work fiinction is used as a reference electrode, the work function of the second plate can be detennined by measuring tliis applied potential between the plates [ ]. One can detemiine the zero-electric-field condition between the two parallel plates by measuring directly the tendency for charge to flow through the external circuit. This is called the static capacitor method [59]. [Pg.1894]

Historically, the first and most important capacitance method is the vibrating capacitor approach implemented by Lord Kelvin in 1897. In this technique (now called the Kelvin probe), the reference plate moves relative to the sample surface at some constant frequency and tlie capacitance changes as tlie interelectrode separation changes. An AC current thus flows in the external circuit. Upon reduction of the electric field to zero, the AC current is also reduced to zero. Originally, Kelvin detected the zero point manually using his quadrant electrometer. Nowadays, there are many elegant and sensitive versions of this technique. A piezoceramic foil can be used to vibrate the reference plate. To minimize noise and maximize sensitivity, a phase-locked... [Pg.1894]

Since e > eo, we seek to explain the smaller field in the presence of the dielectric in terms of molecular properties and the way in which they are affected by the electric field. An easy way to visualize the effect is to picture an opposing surface charge-indicated as in Fig. 10.4b—accumulating on the dielectric. This partially offsets the charge on the capacitor plates to a net charge density a - so that Eq becomes E and is given by... [Pg.667]

The electrons follow the oscillations in the electric field, and experience the time-dependent plasma potential. Due to the capacitor through which the RF power is coupled to the electrodes, no dc current flows through the plasma. The ion and electron currents towards each of the electrodes balance each other over one RF period. [Pg.29]

When selecting polymers for use as insulators, in capacitors, and other electrical applications, we must consider factors other than their interaction with electric fields. The following examples illustrate some of the other factors that we must consider. [Pg.185]

The dipole moment of a molecule can be obtained from a measurement of the variation with temperature of the dielectric constant of a pure liquid or gaseous substance. In an electric field, as between the electrostatically charged plates of a capacitor, polar molecules tend to orient themselves, each one pointing its positive end toward the negative plate and its negative end toward the positive plate. This orientation of the molecules partially neutralizes the applied field and thus increases the capacity of the capacitor, an effect described by saying that the substance has a dielectric constant greater than unity (80 for liquid water at 20°C). The dipole moments of some simple molecules can also be determined very accurately by microwave spectroscopy. [Pg.44]

The electric field or ionic term corresponds to an ideal parallel-plate capacitor, with potential drop g (ion) = qMd/4ire. Itincludes a contribution from the polarizability of the electrolyte, since the dielectric constant is included in the expression. The distance d between the layers of charge is often taken to be from the outer Helmholtz plane (distance of closest approach of ions in solution to the metal in the absence of specific adsorption) to the position of the image charge in the metal a model for the metal is required to define this position properly. The capacitance per unit area of the ideal capacitor is a constant, e/Aird, often written as Klon. The contribution to 1/C is 1 /Klon this term is much less important in the sum (larger capacitance) than the other two contributions.2... [Pg.14]

The growth of an anodic alumina film, at a constant current, is characterized by a virtually linear increase of the electrode potential with time, exemplified by Fig. 10, with a more or less notable curvature (or an intercept of the extrapolated straight line) at the beginning of anodization.73 This reflects the constant rate of increase of the film thickness. Indeed, a linear relationship was found experimentally between the potential and the inverse capacitance78 (the latter reflecting the thickness in a model of a parallel-plate capacitor under the assumption of a constant dielectric permittivity). This is foreseen by applying Eq. (38) to Eq. (35). It is a consequence of the need for a constant electric field on the film in order to transport constant ionic current, as required by Eqs. (39)-(43). [Pg.424]

Method involves placing a specimen between parallel plate capacitors and applying a sinusoidal voltage (frequencies ranging from 1 mHz to 1 MHz) to one of the plates to establish an electric field in the specimen. In response to this field, a specimen becomes electrically polarized and can conduct a small charge from one plate to the other. Through measurement of the resultant current, the dielectric constant and dielectric loss constant for a specimen can be measured. The sharp increases in both the dielectric constant and the dielectric loss constant during a temperature scan are correlated with the occurrence of Tg... [Pg.75]


See other pages where Electric field capacitor is mentioned: [Pg.2000]    [Pg.2000]    [Pg.309]    [Pg.209]    [Pg.130]    [Pg.221]    [Pg.347]    [Pg.352]    [Pg.342]    [Pg.128]    [Pg.27]    [Pg.30]    [Pg.38]    [Pg.39]    [Pg.55]    [Pg.144]    [Pg.58]    [Pg.212]    [Pg.213]    [Pg.515]    [Pg.539]    [Pg.341]    [Pg.98]    [Pg.136]    [Pg.66]    [Pg.74]    [Pg.437]    [Pg.229]    [Pg.184]    [Pg.18]    [Pg.47]    [Pg.80]    [Pg.477]    [Pg.35]    [Pg.36]    [Pg.109]    [Pg.505]    [Pg.35]    [Pg.172]    [Pg.273]    [Pg.670]   
See also in sourсe #XX -- [ Pg.27 ]




SEARCH



Capacitors

Electrical capacitor

Electrical/electrically capacitors

© 2024 chempedia.info