Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elastomers catalysts

CASE (coatings, adhesives, sealants, and elastomers) catalysts, 235 Cast elastomers, 201, 203-204, 248-249 spray and rotational, 204 Catalysis. See also Catalysts ADMET, 435-445 depolymerization and, 545-558 by Lewis acids and metal alkoxides, 68-69... [Pg.579]

Use Stabilizer for vinyl resins, lacquers, elastomers catalyst for urethane and silicones. [Pg.399]

Uses Heat stabilizer for vinyl resins, lacquers, elastomers lubricant for flexible vinyls catalyst for PU foam and silicone elastomers catalyst forfood-contact PU resins and PU resins in food-pkg. adhesives plasticizer... [Pg.1067]

Tetrahydrofurfuryl alcohol is used in elastomer production. As a solvent for the polymerization initiator, it finds appHcation in the manufacture of chlorohydrin mbber. Additionally, tetrahydrofurfuryl alcohol is used as a catalyst solvent-activator and reactive diluent in epoxy formulations for a variety of apphcations. Where exceptional moisture resistance is needed, as for outdoor appHcations, furfuryl alcohol is used jointly with tetrahydrofurfuryl alcohol in epoxy adhesive formulations. [Pg.83]

Polymer-based rocket propellants are generally referred to as composite propellants, and often identified by the elastomer used, eg, urethane propellants or carboxy- (CTPB) or hydroxy- (HTPB) terrninated polybutadiene propellants. The cross-linked polymers act as a viscoelastic matrix to provide mechanical strength, and as a fuel to react with the oxidizers present. Ammonium perchlorate and ammonium nitrate are the most common oxidizers used nitramines such as HMX or RDX may be added to react with the fuels and increase the impulse produced. Many other substances may be added including metallic fuels, plasticizers, stabilizers, catalysts, ballistic modifiers, and bonding agents. Typical components are Hsted in Table 1. [Pg.32]

At one time, the only commercial route to 2-chloro-1,3-butadiene (chloroprene), the monomer for neoprene, was from acetylene (see Elastomers, synthetic). In the United States, Du Pont operated two plants in which acetylene was dimeri2ed to vinylacetylene with a cuprous chloride catalyst and the vinyl-acetylene reacted with hydrogen chloride to give 2-chloro-1,3-butadiene. This process was replaced in 1970 with a butadiene-based process in which butadiene is chlorinated and dehydrochlorinated to yield the desired product (see Chlorocarbonsandchlorohydrocarbons). [Pg.393]

Oxidation Catalysis. The multiple oxidation states available in molybdenum oxide species make these exceUent catalysts in oxidation reactions. The oxidation of methanol (qv) to formaldehyde (qv) is generally carried out commercially on mixed ferric molybdate—molybdenum trioxide catalysts. The oxidation of propylene (qv) to acrolein (77) and the ammoxidation of propylene to acrylonitrile (qv) (78) are each carried out over bismuth—molybdenum oxide catalyst systems. The latter (Sohio) process produces in excess of 3.6 x 10 t/yr of acrylonitrile, which finds use in the production of fibers (qv), elastomers (qv), and water-soluble polymers. [Pg.477]

Polypropylene. PP is a versatile polymer, use of which continues to grow rapidly because of its excellent performance characteristics and improvements in its production economics, eg, through new high efficiency catalysts for gas-phase processes. New PP-blend formulations exhibit improved toughness, particularly at low temperatures. PP has been blended mechanically with various elastomers from a time early in its commercialisation to reduce low temperature brittleness. [Pg.421]

The use of TAG as a curing agent continues to grow for polyolefins and olefin copolymer plastics and mbbers. Examples include polyethylene (109), chlorosulfonated polyethylene (110), polypropylene (111), ethylene—vinyl acetate (112), ethylene—propylene copolymer (113), acrylonitrile copolymers (114), and methylstyrene polymers (115). In ethylene—propylene copolymer mbber compositions. TAG has been used for injection molding of fenders (116). Unsaturated elastomers, such as EPDM, cross link with TAG by hydrogen abstraction and addition to double bonds in the presence of peroxyketal catalysts (117) (see Elastol rs, synthetic). [Pg.88]

Polybutadiene. The many forms that can result from the polymerisation of butadiene, depending on the catalysts used, include high cis, medium cis, low cis, and high vinyl polybutadiene (PBD) (see Elastomers, synthetic-polybutadiene). [Pg.231]

Sodium is a catalyst for many polymerizations the two most familiar are the polymerization of 1,2-butadiene (the Buna process) and the copolymerization of styrene—butadiene mixtures (the modified GRS process). The alfin catalysts, made from sodium, give extremely rapid or unusual polymerizations of some dienes and of styrene (qv) (133—137) (see Butadiene Elastomers, synthetic Styrene plastics). [Pg.169]

Butadiene copolymers are mainly prepared to yield mbbers (see Styrene-butadiene rubber). Many commercially significant latex paints are based on styrene—butadiene copolymers (see Coatings Paint). In latex paint the weight ratio S B is usually 60 40 with high conversion. Most of the block copolymers prepared by anionic catalysts, eg, butyUithium, are also elastomers. However, some of these block copolymers are thermoplastic mbbers, which behave like cross-linked mbbers at room temperature but show regular thermoplastic flow at elevated temperatures (45,46). Diblock (styrene—butadiene (SB)) and triblock (styrene—butadiene—styrene (SBS)) copolymers are commercially available. Typically, they are blended with PS to achieve a desirable property, eg, improved clarity/flexibiHty (see Polymerblends) (46). These block copolymers represent a class of new and interesting polymeric materials (47,48). Of particular interest are their morphologies (49—52), solution properties (53,54), and mechanical behavior (55,56). [Pg.507]

Dibutyltin and dioctyltin diacetate, dilaurate, and di-(2-ethylhexanoate) are used as catalysts for the curing of room-temperature-vulcanized (RTV) sihcone elastomers to produce flexible siUcone mbbers used as sealing compounds, insulators, and in a wide variety of other appHcations. Diorganotin carboxylates also catalyze the curing of thermosetting siHcone resins, which are widely used in paper-release coatings. [Pg.74]

Synthetic resins, such as phenoHc and cresyUc resins (see Phenolic resins), are the most commonly used friction material binders, and are usually modified with drying oils, elastomer, cardanol [37330-39-5] an epoxy, phosphoms- or boron-based compounds, or even combinations of two. They ate prepared by the addition of the appropriate phenol and formaldehyde [50-00-0] in the presence of an acidic or basic catalyst. Polymerization takes place at elevated temperatures. Other resin systems are based on elastomers (see Elastomers, synthetic), drying oils, or combinations of the above or other polymers. [Pg.274]

Metal salts of neodecanoic acid have also been used as catalysts in the preparation of polymers. For example, bismuth, calcium, barium, and 2kconium neodecanoates have been used as catalysts in the formation of polyurethane elastomers (91,92). Magnesium neodecanoate [57453-97-1] is one component of a catalyst system for the preparation of polyolefins (93) vanadium, cobalt, copper, or kon neodecanoates have been used as curing catalysts for conjugated-diene butyl elastomers (94). [Pg.105]

Between the 1920s when the initial commercial development of mbbery elastomers based on 1,3-dienes began (5—7), and 1955 when transition metal catalysts were fkst used to prepare synthetic polyisoprene, researchers in the U.S. and Europe developed emulsion polybutadiene and styrene—butadiene copolymers as substitutes for natural mbber. However, the tire properties of these polymers were inferior to natural mbber compounds. In seeking to improve the synthetic material properties, research was conducted in many laboratories worldwide, especially in the U.S. under the Rubber Reserve Program. [Pg.530]

In 1957, it was discovered that organometaUic catalysts gave high mol wt polymers from epoxides (3). The commercially important, largely amorphous polyether elastomers developed as a result of this early work are polyepichlorohydrin (ECH) (4,5), ECH—ethylene oxide (EO) copolymer (6), ECH—aUyl glycidyl ether (AGE) copolymer (7,8), ECH—EO—AGE terpolymer (8), ECH—propylene oxide (PO)—AGE terpolymer (8,9), and PO—AGE copolymer (10,11). The American Society for Testing and Materials (ASTM) has designated these polymers as follows ... [Pg.553]

Epichlorohydrin Elastomers without AGE. Polymerization on a commercial scale is done as either a solution or slurry process at 40—130°C in an aromatic, ahphatic, or ether solvent. Typical solvents are toluene, benzene, heptane, and diethyl ether. Trialkylaluniinum-water and triaLkylaluminum—water—acetylacetone catalysts are employed. A cationic, coordination mechanism is proposed for chain propagation. The product is isolated by steam coagulation. Polymerization is done as a continuous process in which the solvent, catalyst, and monomer are fed to a back-mixed reactor. Pinal product composition of ECH—EO is determined by careful control of the unreacted, or background, monomer in the reactor. In the manufacture of copolymers, the relative reactivity ratios must be considered. The reactivity ratio of EO to ECH has been estimated to be approximately 7 (35—37). [Pg.555]

Polybutadiene was first prepared in the early years of the 20th century by such methods as sodium-catalysed polymerisation of butadiene. However, the polymers produced by these methods and also by the later free-radical emulsion polymerisation techniques did not possess the properties which made them desirable rubbers. With the development of the Ziegler-Natta catalyst systems in the 1950s, it was possible to produce polymers with a controlled stereo regularity, some of which had useful properties as elastomers. [Pg.290]

Polychloroprene rubber (CR) is the most popular and versatile of the elastomers used in adhesives. In the early 1920s, Dr. Nieuwland of the University of Notre Dame synthesized divinyl acetylene from acetylene using copper(l) chloride as catalyst. A few years later, Du Pont scientists joined Dr. Nieuwland s research and prepared monovinyl acetylene, from which, by controlled reaction with hydrochloric acid, the chloroprene monomer (2-chloro-l, 3-butadiene) was obtained. Upon polymerization of chloroprene a rubber-like polymer was obtained. In 1932 it was commercialized under the tradename DuPrene which was changed to Neoprene by DuPont de Nemours in 1936. [Pg.589]


See other pages where Elastomers catalysts is mentioned: [Pg.322]    [Pg.323]    [Pg.1466]    [Pg.322]    [Pg.323]    [Pg.1466]    [Pg.72]    [Pg.227]    [Pg.468]    [Pg.400]    [Pg.451]    [Pg.71]    [Pg.425]    [Pg.429]    [Pg.304]    [Pg.95]    [Pg.137]    [Pg.242]    [Pg.493]    [Pg.58]    [Pg.55]    [Pg.343]    [Pg.345]    [Pg.469]    [Pg.25]    [Pg.184]    [Pg.492]    [Pg.49]    [Pg.553]    [Pg.558]    [Pg.189]    [Pg.190]    [Pg.795]    [Pg.159]   
See also in sourсe #XX -- [ Pg.58 ]




SEARCH



Elastomer synthesis catalysts

Polymerization, elastomer synthesis catalysts

Polyolefin elastomers metallocene catalyst

Silicone-elastomer catalyst

© 2024 chempedia.info