Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elastic Evaluation

Restored parameters for the evaluation of PDSM, may be different PMF of material tensor of stresses or its invariants, spatial gradients of elastic features (in particular. Young s modulus E and shear modulus G), strong, technological ( hardness HRC, plasticity ), physical (density) and others. [Pg.250]

Dynamic models for ionic lattices recognize explicitly the force constants between ions and their polarization. In shell models, the ions are represented as a shell and a core, coupled by a spring (see Refs. 57-59), and parameters are evaluated by matching bulk elastic and dielectric properties. Application of these models to the surface region has allowed calculation of surface vibrational modes [60] and LEED patterns [61-63] (see Section VIII-2). [Pg.268]

The elasticity of a fiber describes its abiUty to return to original dimensions upon release of a deforming stress, and is quantitatively described by the stress or tenacity at the yield point. The final fiber quaUty factor is its toughness, which describes its abiUty to absorb work. Toughness may be quantitatively designated by the work required to mpture the fiber, which may be evaluated from the area under the total stress-strain curve. The usual textile unit for this property is mass pet unit linear density. The toughness index, defined as one-half the product of the stress and strain at break also in units of mass pet unit linear density, is frequentiy used as an approximation of the work required to mpture a fiber. The stress-strain curves of some typical textile fibers ate shown in Figure 5. [Pg.270]

Elastic Properties. The abiUty of a fiber to deform under below-mpture loads and to return to its original configuration or dimension upon load removal is an important performance criterion. Permanent deformation may be as detrimental as actual breakage, rendering a product inadequate for further use. Thus, the repeated stress or strain characteristics are of significance in predicting or evaluating functional properties. [Pg.455]

Hertzian mechanics alone cannot be used to evaluate the force-distance curves, since adhesive contributions to the contact are not considered. Several theories, namely the JKR [4] model and the Derjaguin, Muller and Torporov (DMT) model [20], can be used to describe adhesion between a sphere and a flat. Briefly, the JKR model balances the elastic Hertzian pressure with attractive forces acting only within the contact area in the DMT theory attractive interactions are assumed to act outside the contact area. In both theories, the adhesive force is predicted to be a linear function of probe radius, R, and the work of adhesion, VFa, and is given by Eqs. 1 and 2 below. [Pg.196]

To evaluate the influx solution experimentally for an A/B cantilever beam configuration as shown in Fig. 1, we apply Griffith s theory at the critical moment of fracture, such that the incremental change in stored elastic energy U. with change in crack length a, is Just sufficient to overcome the fracture surface energy S... [Pg.372]

Equation 5.2 indicates that i is much lower than the corresponding value for the elastic-dielectric, while Eq. (5.3) indicates that if is significantly greater than the corresponding value for the elastic-dielectric. Since both of these current values depend upon the velocity of the plastic wave, measurements of these currents can, in principle, be used to evaluate the velocity of the plastic wave. Observation of a waveform described by Eq. (5.1) would confirm the presence of a second wave behind which the material is conductive. [Pg.100]

Under development are intelligent vehicles for crack detection. An elastic-wave version (developed by British Gas and the Harwell Laboratory) is currently being evaluated in a test-loop. This vehicle has successfully detected stress-corrosion cracks in the test-loop. The Gas Research Institute (USA) is sponsoring development work with intelligent vehicles at the Battelle Columbus Division (Ohio). Facilities for testing vehicles were commissioned in 1991... [Pg.1147]

Beck, et al. have used the permeation technique to study the effect of uniaxial tensile stresses in the elastic region on hydrogen permeation through pure iron, and have shown that it increases with increase in stress. The partial molar volume of hydrogen (cubic centimetres of hydrogen per mole of iron) in ferrous alloys can be evaluated from the variation of permeation with applied stress, and from the relationship... [Pg.1215]

Kuznetsov et al. s methodological approach [72-75] provides another example of attempts to evalue the interphase thickness experimentally. Their approach was based on the hypothesis that the mesophase remains glassy while the bulk of the binder has already passed to the highly elastic state. Investigating the concentration... [Pg.8]

By calculating the energy to heat it is possible to determine the vibration levels to which the structure can be exposed and still exhibit critical damping. There is one area that must be evaluated. Plastics exhibit a spectrum of response to stress and there are certain straining rates that the material will react to almost elastically. If this characteristic response corresponds to a frequency to which the structure is exposed the damping effect is minimal and the structure may be destroyed. In order to avoid the possibility of this occurring, it is desirable to have a curve of energy absorption vs. frequency for the material that will be used. [Pg.101]

Although hardness is a somewhat nebulous term, it can be defined in terms of the tensile modulus of elasticity. From a more practical side, it is usually characterized by a combination of three measurable parameters (1) scratch resistance (2) abrasion or mar resistance and (3) indentation under load. To measure scratch resistance or hardness, an approach is where a specimen is moved laterally under a loaded diamond point. The hardness value is expressed as the load divided by the width of the scratch. In other tests, especially in the paint industry, the surface is scratched with lead pencils of different hardnesses. The hardness of the surface is defined by the pencil hardness that first causes a visible scratch. Other tests include a sand-blast spray evaluation. [Pg.411]


See other pages where Elastic Evaluation is mentioned: [Pg.62]    [Pg.1734]    [Pg.437]    [Pg.150]    [Pg.260]    [Pg.269]    [Pg.270]    [Pg.277]    [Pg.544]    [Pg.330]    [Pg.202]    [Pg.130]    [Pg.285]    [Pg.2]    [Pg.2]    [Pg.248]    [Pg.192]    [Pg.308]    [Pg.233]    [Pg.175]    [Pg.359]    [Pg.531]    [Pg.11]    [Pg.128]    [Pg.197]    [Pg.202]    [Pg.24]    [Pg.71]    [Pg.95]    [Pg.100]    [Pg.137]    [Pg.374]    [Pg.237]    [Pg.390]    [Pg.99]    [Pg.108]    [Pg.68]    [Pg.303]   
See also in sourсe #XX -- [ Pg.74 ]




SEARCH



Elastic formulation evaluation

© 2024 chempedia.info