Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dynamics metal surfaces

As on previous occasions, the reader is reminded that no very extensive coverage of the literature is possible in a textbook such as this one and that the emphasis is primarily on principles and their illustration. Several monographs are available for more detailed information (see General References). Useful reviews are on future directions and anunonia synthesis [2], surface analysis [3], surface mechanisms [4], dynamics of surface reactions [5], single-crystal versus actual catalysts [6], oscillatory kinetics [7], fractals [8], surface electrochemistry [9], particle size effects [10], and supported metals [11, 12]. [Pg.686]

For example, energy transfer in molecule-surface collisions is best studied in nom-eactive systems, such as the scattering and trapping of rare-gas atoms or simple molecules at metal surfaces. We follow a similar approach below, discussing the dynamics of the different elementary processes separately. The surface must also be simplified compared to technologically relevant systems. To develop a detailed understanding, we must know exactly what the surface looks like and of what it is composed. This requires the use of surface science tools (section B 1.19-26) to prepare very well-characterized, atomically clean and ordered substrates on which reactions can be studied under ultrahigh vacuum conditions. The most accurate and specific experiments also employ molecular beam teclmiques, discussed in section B2.3. [Pg.899]

The polarization dependence of the photon absorbance in metal surface systems also brings about the so-called surface selection rule, which states that only vibrational modes with dynamic moments having components perpendicular to the surface plane can be detected by RAIRS [22, 23 and 24]. This rule may in some instances limit the usefidness of the reflection tecluiique for adsorbate identification because of the reduction in the number of modes visible in the IR spectra, but more often becomes an advantage thanks to the simplification of the data. Furthenuore, the relative intensities of different vibrational modes can be used to estimate the orientation of the surface moieties. This has been particularly useful in the study of self-... [Pg.1782]

Baer R and Kosloff R 1997 Quantum dissipative dynamics of adsorbates near metal surfaces a surrogate Hamiltonian theory applied to hydrogen on nickel J. Chem. Rhys. 106 8862... [Pg.2323]

E. Spohr. Computer simulaton of the structure and dynamics of water near metal surfaces. In G. Jerkiewicz, M. P. Soriaga, K. Uosaki, A. Wieckowski, eds. Solid-Liquid Electrochemical Interfaces, Vol. 656 of ACS Symposium Series. Washington ACS, 1997, Chap. 3, pp. 31-44. [Pg.381]

Recently, Vigil and Willmore [67] have reported mean field and lattice gas studies of the oscillatory dynamics of a variant of the ZGB model. In this example oscillations are also introduced, allowing the reversible adsorption of inert species. Furthermore, Sander and Ghaisas [69] have very recently reported simulations for the oxidation of CO on Pt in the presence of two forms of oxygen, namely chemisorbed atomic O and oxidized metal surface. These species, which are expected to be present for reaction under atmospheric pressure, are relevant for the onset of oscillatory behavior [69]. [Pg.406]

It is important to recognize that all materials will have problems in certain environments, whether they are plastics, metals, aluminum, or something else. For example, the chemical effect and/or corrosion of metal surfaces has a damaging effect on both the static and dynamic strength properties of metals because it ultimately creates a reduced cross-section that can lead to eventual failure. The combined effect of corrosion and stress on strength characteristics is called stress corrosion. When the load is variable, the com-... [Pg.407]

The capacity of the ordered film for supporting loads is between that of the static film and that of the dynamic fluid film. The orientation property of the ordered layer gradually becomes weak with the distance apart from the metal surface. The transition occurs as the ordered film appears more important between the two solid surfaces. The thickness of the ordered film is related to the initial viscosity or molecular size of the lubricant, as shown in Fig. 13, so that we can generally write the critical film thickness as follows ... [Pg.41]

Adsorbed CO on a metal surface is one of the simplest adsorbates and has attracted significant interest within the areas of fundamental surface science, catalysis, and electrochemistry. An understanding of the oxidation mechanism of adsorbed CO is important to design and develop electrocatalysts for fuel cells [69-73] and the surface dynamics of adsorbed CO on electrode surfaces in electrolyte solutions is, therefore, very important. [Pg.84]

Matsumoto, Y. (2007) Photochemistry and photo-induced ultrafast dynamics at metal surfaces. Bull. Chem. Soc.Jpn., 80,842-855. [Pg.115]

In addition to enhancing surface reactions, water can also facilitate surface transport processes. First-principles ab initio molecular dynamics simulations of the aqueous/ metal interface for Rh(l 11) [Vassilev et al., 2002] and PtRu(OOOl) alloy [Desai et al., 2003b] surfaces showed that the aqueous interface enhanced the apparent transport or diffusion of OH intermediates across the metal surface. Adsorbed OH and H2O molecules engage in fast proton transfer, such that OH appears to diffuse across the surface. The oxygen atoms, however, remained fixed at the same positions, and it is only the proton that transfers. Transport occurs via the symmetric reaction... [Pg.107]

Bonn M, Denzler DN, Eunk S, Wolf M. 2000. Ultrafast electron dynamics at metal surfaces Competition between electron-phonon coupling and hot-electron transport. Phys Rev B 61 1101-1105. [Pg.404]

The topic of this review, reactions at metal surfaces, has been in general treated in a similar way to gas-phase reactivity. High level ab initio electronic structure methods are used to construct potential energy surfaces of catalytically important surface reactions in reduced dimensions. Once a chemically accurate potential surface is available, quantum or classical dynamics may be carried out in order to more deeply understand the microscopic nature of the reaction. [Pg.384]

Fig. 3. Vibrational population distributions of N2 formed in associative desorption of N-atoms from ruthenium, (a) Predictions of a classical trajectory based theory adhering to the Born-Oppenheimer approximation, (b) Predictions of a molecular dynamics with electron friction theory taking into account interactions of the reacting molecule with the electron bath, (c) Born—Oppenheimer potential energy surface, (d) Experimentally-observed distribution. The qualitative failure of the electronically adiabatic approach provides some of the best available evidence that chemical reactions at metal surfaces are subject to strong electronically nonadiabatic influences. (See Refs. 44 and 45.)... Fig. 3. Vibrational population distributions of N2 formed in associative desorption of N-atoms from ruthenium, (a) Predictions of a classical trajectory based theory adhering to the Born-Oppenheimer approximation, (b) Predictions of a molecular dynamics with electron friction theory taking into account interactions of the reacting molecule with the electron bath, (c) Born—Oppenheimer potential energy surface, (d) Experimentally-observed distribution. The qualitative failure of the electronically adiabatic approach provides some of the best available evidence that chemical reactions at metal surfaces are subject to strong electronically nonadiabatic influences. (See Refs. 44 and 45.)...
The above studies show that the chemisorptions on metals could often alter the composition and structure of metal surfaces. To bridge the pressure gap, in situ STM has played a critical role in observing the dynamic behavior of catalytic surfaces from UHV to atmospheric pressures. [Pg.81]


See other pages where Dynamics metal surfaces is mentioned: [Pg.245]    [Pg.595]    [Pg.904]    [Pg.907]    [Pg.913]    [Pg.1781]    [Pg.445]    [Pg.78]    [Pg.824]    [Pg.189]    [Pg.39]    [Pg.398]    [Pg.436]    [Pg.129]    [Pg.239]    [Pg.215]    [Pg.667]    [Pg.672]    [Pg.24]    [Pg.98]    [Pg.19]    [Pg.26]    [Pg.27]    [Pg.50]    [Pg.54]    [Pg.73]    [Pg.73]    [Pg.77]    [Pg.128]    [Pg.136]    [Pg.232]    [Pg.43]    [Pg.270]    [Pg.383]    [Pg.92]   
See also in sourсe #XX -- [ Pg.498 ]




SEARCH



Structure and dynamics of water near metal surfaces

© 2024 chempedia.info