Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dynamics energy models

Dynamic meteorological models, much like air pollution models, strive to describe the physics and thermodynamics of atmospheric motions as accurately as is feasible. Besides being used in conjunction with air quaHty models, they ate also used for weather forecasting. Like air quaHty models, dynamic meteorological models solve a set of partial differential equations (also called primitive equations). This set of equations, which ate fundamental to the fluid mechanics of the atmosphere, ate referred to as the Navier-Stokes equations, and describe the conservation of mass and momentum. They ate combined with equations describing energy conservation and thermodynamics in a moving fluid (72) ... [Pg.383]

In our opening remarks in this section, we mentioned that an analogy with dynamical Ising models can only be carried so far since there is no known conserved energy for the Life rule. However, Schulman and Seiden were able to discover a possible constant of the motion , namely a normalized entropy. [Pg.368]

In particular it can be shown that the dynamic flocculation model of stress softening and hysteresis fulfils a plausibility criterion, important, e.g., for finite element (FE) apphcations. Accordingly, any deformation mode can be predicted based solely on uniaxial stress-strain measurements, which can be carried out relatively easily. From the simulations of stress-strain cycles at medium and large strain it can be concluded that the model of cluster breakdown and reaggregation for prestrained samples represents a fundamental micromechanical basis for the description of nonlinear viscoelasticity of filler-reinforced rubbers. Thereby, the mechanisms of energy storage and dissipation are traced back to the elastic response of tender but fragile filler clusters [24]. [Pg.621]

IX vcloping Dynamic Balance Models, Simulation Approach to Model Solving, Dynamic Mass and Energy Balances... [Pg.722]

The example simulation THERMFF illustrates this method of using a dynamic process model to develop a feedforward control strategy. At the desired setpoint the process will be at steady-state. Therefore the steady-state form of the model is used to make the feedforward calculations. This example involves a continuous tank reactor with exothermic reaction and jacket cooling. It is assumed here that variations of inlet concentration and inlet temperature will disturb the reactor operation. As shown in the example description, the steady state material balance is used to calculate the required response of flowrate and the steady state energy balance is used to calculate the required variation in jacket temperature. This feedforward strategy results in perfect control of the simulated process, but limitations required on the jacket temperature lead to imperfections in the control. [Pg.77]

The dynamic process model involves a component balance, energy balance, kinetics and Arrhenius relationship. Hence... [Pg.438]

It is important to propose molecular and theoretical models to describe the forces, energy, structure and dynamics of water near mineral surfaces. Our understanding of experimental results concerning hydration forces, the hydrophobic effect, swelling, reaction kinetics and adsorption mechanisms in aqueous colloidal systems is rapidly advancing as a result of recent Monte Carlo (MC) and molecular dynamics (MO) models for water properties near model surfaces. This paper reviews the basic MC and MD simulation techniques, compares and contrasts the merits and limitations of various models for water-water interactions and surface-water interactions, and proposes an interaction potential model which would be useful in simulating water near hydrophilic surfaces. In addition, results from selected MC and MD simulations of water near hydrophobic surfaces are discussed in relation to experimental results, to theories of the double layer, and to structural forces in interfacial systems. [Pg.20]

There has been a long history in theoretical efforts to understand H + H/Cu(lll) and its isotopic analogs because it represents the best studied prototype of an ER/HA reaction. These have evolved from simple 2D collinear quantum dynamics on model PES [386] to 6D quasi-classical dynamics on PES fit to DFT calculations [380,387,388], and even attempts to include lattice motion on ER/HA reactions [389]. These studies show that there is little reflection of incident H because of the deep well and energy scrambling upon impact, i.e., a % 1. Although some of the... [Pg.232]

Typically, a non-linear system dynamic model is made up of individual lumped models of the components which at a minimum conserve mass and energy across the given component, but may also have a momentum equation if pressure drops must also be analyzed. For most dynamic problems of interest in hybrid studies, however, the momentum equation may be taken as quasi-steady (unless the solver requires the dynamic form to perform the numerical solution). Higher fidelity individual models or reduced order models (ROMs) can also be used, where the connection to the system model would be made at each subcomponent boundary. Since dynamic systems modeling is not as common as steady-state modeling, some discussion of modeling approaches will be given. There are two primary methods used to provide solutions for the pressure-flow dynamics of a system model. [Pg.251]


See other pages where Dynamics energy models is mentioned: [Pg.499]    [Pg.329]    [Pg.358]    [Pg.534]    [Pg.536]    [Pg.33]    [Pg.46]    [Pg.364]    [Pg.339]    [Pg.127]    [Pg.100]    [Pg.113]    [Pg.36]    [Pg.93]    [Pg.97]    [Pg.46]    [Pg.123]    [Pg.175]    [Pg.181]    [Pg.262]    [Pg.164]    [Pg.105]    [Pg.465]    [Pg.178]    [Pg.269]    [Pg.123]    [Pg.88]    [Pg.5]    [Pg.230]    [Pg.155]   


SEARCH



Molecular modeling energy minimization, dynamics simulation

Schematic representation of a dynamic energy budget model

Tight-binding molecular dynamics energy models

© 2024 chempedia.info