Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Droplet transient

The d -law assumes a constant Tg. However, in many practical situations the temperature of the droplet when introduced into the evaporator is far below this final, equilibrium value. Hence an initial transient heating period exists during which y, and Tf all increase whereas H decreases. Furthermore it can be estimated also that the sensible heat required to heat the droplet is of the same order as the latent heat of vaporization. Hence droplet transient heating effects on the bulk vaporization characteristics are expected to be significant. Two such models, representing extreme rates of internal heating, will be discussed. [Pg.10]

Berriman J and Unwin N 1994 Analysis of transient structures by cryo-electron microscopy combined with rapid mixing of spray droplets Ultramicroscopy 56 241-52... [Pg.1654]

Figure 8. Example of microwave conductivity transient map PMC relaxation time map taken from a 20- m thin silicon wafer onto which 11 droplets of zeolith suspension were deposited and dried. Reduced lifetimes are clearly observed in the region of droplets. For color version please see color plates opposite this page. Figure 8. Example of microwave conductivity transient map PMC relaxation time map taken from a 20- m thin silicon wafer onto which 11 droplets of zeolith suspension were deposited and dried. Reduced lifetimes are clearly observed in the region of droplets. For color version please see color plates opposite this page.
The nature of mass transport in MEMED has been confirmed with both ampero-metric and potentiometric studies of bromine transfer from an aqueous phase to DCE [79]. Figure 17 shows typical amperometric data for this case, in which the DCE phase acts as a sink for Br2, and a depleted region of Br2 is measured adjacent to the droplet in the aqueous phase. Video images are also provided, which correspond to particular times during the amperometric transient at position (3) the edge of the developing concentration boundary layer, around the drop, reaches the electrode the concentration profile is then mapped out between points (3) and (4). The measured current, i, can be related to the local concentration, c, via... [Pg.351]

An analogous apparatus to that of Ref. 9 was used to follow the effect of the lipid monolayer on the rate of electron transfer (ET). In this setup [47], an organic phase droplet (1,2-DCE) is continuously expanded into the aqueous phase, and the resulting current transient was monitored in the absence and presence of the adsorbed lipid mono-layer. The rate of ET was decreased as a function of the lipid concentration. [Pg.544]

Janssen, J. M. H., and Meijer, H. E. H., Droplet breakup mechanisms stepwise equilibrium versus transient dispersion. J. Rheol. 37(4), 597-608 (1993). [Pg.200]

Explicit forms for the stress tensors d1 are deduced from the microscopic expressions for the component stress tensors and from the scheme of the total stress devision between the components [164]. Within this model almost all essential features of the viscoelastic phase separation observable experimentally can be reproduced [165] (see Fig. 20) existence of a frozen period after the quench nucleation of the less viscous phase in a droplet pattern the volume shrinking of the more viscous phase transient formation of the bicontinuous network structure phase inversion in the final stage. [Pg.185]

In subcooled impact, the initial droplet temperature is lower than the saturated temperature of the liquid of the droplet, thus the transient heat transfer inside the droplet needs to be considered. Since the thickness of the vapor layer may be comparable with the mean free path of the gas molecules in the subcooled impact, the kinetic slip treatment of the boundary condition needs to be applied at the liquid-vapor and vapor-solid interface to modify the continuum system. [Pg.39]

The substantial effect of secondary breakup of droplets on the final droplet size distributions in sprays has been reported by many researchers, particularly for overheated hydrocarbon fuel sprays. 557 A quantitative analysis of the secondary breakup process must deal with the aerodynamic effects caused by the flow around each individual, moving droplet, introducing additional difficulty in theoretical treatment. Aslanov and Shamshev 557 presented an elementary mathematical model of this highly transient phenomenon, formulated on the basis of the theory of hydrodynamic instability on the droplet-gas interface. The model and approach may be used to make estimations of the range of droplet sizes and to calculate droplet breakup in high-speed flows behind shock waves, characteristic of detonation spray processes. [Pg.330]

In the lumped parameter model, the transient temperature of a single droplet during flight in a high speed atomization gas is calculated using the modified Newton s law of cooling, 1561 considering the frictional heat produced by the violent gas-droplet interactions due... [Pg.371]

With the above-described heat transfer model and rapid solidification kinetic model, along with the related process parameters and thermophysical properties of atomization gases (Tables 2.6 and 2.7) and metals/alloys (Tables 2.8,2.9,2.10 and 2.11), the 2-D distributions of transient droplet temperatures, cooling rates, achievable undercoolings, and solid fractions in the spray can be calculated, once the initial droplet sizes, temperatures, and velocities are established by the modeling of the atomization stage, as discussed in the previous subsection. For the implementation of the heat transfer model and the rapid solidification kinetic model, finite difference methods or finite element methods may be used. To characterize the entire size distribution of droplets, some specific droplet sizes (forexample,.D0 16,Z>05, andZ)0 84) are to be considered in the calculations of the 2-D motion, cooling and solidification histories. [Pg.374]

The first numerical study on the transient flow of a single liquid droplet impinging onto a flat surface, into a shallow or deep pool was performed by Harlow and Shannon)397 In their work, the full Navier-Stokes equations were solved numerically in cylindrical... [Pg.382]

Some major assumptions were made in the derivation of Eqs. (6.118) and (6.133). First, it was assumed that the specific heat, thermal conductivity, and the product Dp were constants and that the Lewis number was equal to 1. Second, it was assumed that there was no transient heating of the droplet. Furthermore, the role of finite reaction kinetics was not addressed adequately. These points will be given consideration in this section. [Pg.359]

Transient Heating of Droplets When a cold liquid fuel droplet is injected into a hot stream or ignited by some other source, it must be heated to its steady-state temperature Ts derived in the last section. Since the heat-up time can influence the V/2 law, particularly for high-boiling-point fuels, it is of interest to examine the effect of the droplet heating mode on the main bulk combustion characteristic—the burning time. [Pg.361]

COSILAB Combustion Simulation Software is a set of commercial software tools for simulating a variety of laminar flames including unstrained, premixed freely propagating flames, unstrained, premixed burner-stabilized flames, strained premixed flames, strained diffusion flames, strained partially premixed flames cylindrical and spherical symmetrical flames. The code can simulate transient spherically expanding and converging flames, droplets and streams of droplets in flames, sprays, tubular flames, combustion and/or evaporation of single spherical drops of liquid fuel, reactions in plug flow and perfectly stirred reactors, and problems of reactive boundary layers, such as open or enclosed jet flames, or flames in a wall boundary layer. The codes were developed from RUN-1DL, described below, and are now maintained and distributed by SoftPredict. Refer to the website http //www.softpredict.com/cms/ softpredict-home.html for more information. [Pg.755]


See other pages where Droplet transient is mentioned: [Pg.62]    [Pg.100]    [Pg.259]    [Pg.62]    [Pg.100]    [Pg.259]    [Pg.106]    [Pg.96]    [Pg.401]    [Pg.104]    [Pg.451]    [Pg.188]    [Pg.236]    [Pg.538]    [Pg.332]    [Pg.429]    [Pg.184]    [Pg.39]    [Pg.170]    [Pg.217]    [Pg.218]    [Pg.319]    [Pg.344]    [Pg.347]    [Pg.372]    [Pg.381]    [Pg.383]    [Pg.385]    [Pg.390]    [Pg.390]    [Pg.440]    [Pg.441]    [Pg.97]    [Pg.511]    [Pg.16]    [Pg.180]   
See also in sourсe #XX -- [ Pg.7 ]




SEARCH



Heating effects, droplet transient

Transient droplet heating during

Transient droplet heating during vaporization

© 2024 chempedia.info