Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

DRIFTS reflectance

Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) Reflection-absorption infrared spectroscopy (RAIRS) (also known as infrared reflection absorption spectroscopy, IRAS or IRRAS) Multiple Internal reflection spectroscopy (MIR)... [Pg.4591]

Specular reflectance (Fresnel) Diffuse reflectance (DRIFTS) Reflection-absorption (RA) Grazing angle... [Pg.523]

The claim is that if Yt is a Brownian motion with drift started at jc, with a being the lower barrier and M is the infimum of Yi at time t, then Zt = Yt if M > a and Yt+a-MifM < a is an exact sample of Brownian motion with drift reflected at a. The infimum on a path from jc to y can be found as... [Pg.316]

DRIFTS Diffuse reflectance infrared Fourier-transform Same as IR Same as IR... [Pg.317]

Vibrational Spectroscopy. Infrared absorption spectra may be obtained using convention IR or FTIR instrumentation the catalyst may be present as a compressed disk, allowing transmission spectroscopy. If the surface area is high, there can be enough chemisorbed species for their spectra to be recorded. This approach is widely used to follow actual catalyzed reactions see, for example. Refs. 26 (metal oxide catalysts) and 27 (zeolitic catalysts). Diffuse reflectance infrared reflection spectroscopy (DRIFT S) may be used on films [e.g.. Ref. 28—Si02 films on Mo(llO)]. Laser Raman spectroscopy (e.g.. Refs. 29, 30) and infrared emission spectroscopy may give greater detail [31]. [Pg.689]

The use of DRIFTS for the characterization of surfaces has to date been limited, but has recently been used for applications in fields as diverse as sensors development [12], soils science [13], forensic chemistry [14], corrosion [15], wood science [16] and art [F7]. Given that there is in general no reason for preferring transmission over difilise reflectance in the study of high-area powder systems, DRIFTS is likely to become much more popular in the near fiiture. [Pg.1781]

Vreugdenhil A J and Butler I S 1998 Investigation of MMT adsorption on soils by diffuse reflectance infrared spectroscopy DRIFTS and headspace analysis gas-phase infrared spectroscopy HAGIS Appl. Organomet. Chem. [Pg.1795]

A second example is also informative. When samples are obtained from a normally distributed population, their values must be random. If results for several samples show a regular pattern or trend, then the samples cannot be normally distributed. This may reflect the fact that the underlying population is not normally distributed, or it may indicate the presence of a time-dependent determinate error. For example, if we randomly select 20 pennies and find that the mass of each penny exceeds that of the preceding penny, we might suspect that the balance on which the pennies are being weighed is drifting out of calibration. [Pg.82]

Several factors affect the bandshapes observed ia drifts of bulk materials, and hence the magnitude of the diffuse reflectance response. Particle size is extremely important, siace as particle size decreases, spectral bandwidths generally decrease. Therefore, it is desirable to uniformly grind the samples to particle sizes of <50 fim. Sample homogeneity is also important as is the need for dilute concentrations ia the aoaabsorbiag matrix. [Pg.286]

Diffuse reflection iavolves reflecting the iafrared beam off of a soHd sample, as ia specular reflectioa, but it is the aoaspecular portioa of the reflected radiatioa that is coUected. Whea an ftir spectrometer is used, diffuse reflection is caUed DRIFTS (diffuse reflectance iafrared Fourier-transform... [Pg.198]

Fig. 2. Electron drift velocities as a function of electric field for A, GaAs and B, Si The gradual saturation of curve B is characteristic of all indirect semiconductors. Curve A is characteristic of direct gap semiconductors and at low electric fields this curve has a steeper slope which reflects the larger electron mobiUty. The peak in curve A is the point at which a substantial fraction of the electrons have gained sufficient energy to populate the indirect L minimum which has a much larger electron-effective mass than the F minimum. Above 30 kV/cm (not shown) the drift velocity in Si exceeds that in... Fig. 2. Electron drift velocities as a function of electric field for A, GaAs and B, Si The gradual saturation of curve B is characteristic of all indirect semiconductors. Curve A is characteristic of direct gap semiconductors and at low electric fields this curve has a steeper slope which reflects the larger electron mobiUty. The peak in curve A is the point at which a substantial fraction of the electrons have gained sufficient energy to populate the indirect L minimum which has a much larger electron-effective mass than the F minimum. Above 30 kV/cm (not shown) the drift velocity in Si exceeds that in...
Several properties of the filler are important to the compounder (279). Properties that are frequentiy reported by fumed sihca manufacturers include the acidity of the filler, nitrogen adsorption, oil absorption, and particle size distribution (280,281). The adsorption techniques provide a measure of the surface area of the filler, whereas oil absorption is an indication of the stmcture of the filler (282). Measurement of the sdanol concentration is critical, and some techniques that are commonly used in the industry to estimate this parameter are the methyl red absorption and methanol wettabihty (273,274,277) tests. Other techniques include various spectroscopies, such as diffuse reflectance infrared spectroscopy (drift), inverse gas chromatography (igc), photoacoustic ir, nmr, Raman, and surface forces apparatus (277,283—290). [Pg.49]

Where b is Planck s constant and m and are the effective masses of the electron and hole which may be larger or smaller than the rest mass of the electron. The effective mass reflects the strength of the interaction between the electron or hole and the periodic lattice and potentials within the crystal stmcture. In an ideal covalent semiconductor, electrons in the conduction band and holes in the valence band may be considered as quasi-free particles. The carriers have high drift mobilities in the range of 10 to 10 cm /(V-s) at room temperature. As shown in Table 4, this is the case for both metallic oxides and covalent semiconductors at room temperature. [Pg.357]

One could assume that this characteristic behavior of the mobility of the polymers is also reflected by the typical relaxation times r of the driven chains. Indeed, in Fig. 28 we show the relaxation time T2, determined from the condition g2( Z2) = - g/3 in dependence on the field B evidently, while for B < B t2 is nearly constant (or rises very slowly), for B > Be it grows dramatically. This result, as well as the characteristic variation of with B (cf. Figs. 27(a-c)), may be explained, at least phenomenologically, if the motion of a polymer chain through the host matrix is considered as consisting of (i) nearly free drift from one obstacle to another, and (ii) a period of trapping, r, of the molecule at the next obstacle. If the mean distance between obstacles is denoted by ( and the time needed by the chain to travel this distance is /, then - (/ t + /), whereby from Eq. (57) / = /Vq — k T/ DqBN). This gives a somewhat better approximation for the drift velocity... [Pg.611]

Other situations may also occur that allow a simple determination of the sensitivity factor. When, for example, a sufficiently negative electrode potential forces all minority carriers to drift into the interior of the semiconductor electrode, where they recombine subject to the bulk lifetime Tfr we will see a limiting PMC signal (given a sufficiently thick electrode). Knowing the photonflux /0 (corrected for reflection), we may expect the following formula to hold ... [Pg.493]

Characterization. In-situ diffuse reflectance FTIR (DRIFT) experiments were carried out with undiluted samples of the zeolites in a Spectratech DRIFT cell and a Nicolet Magna 550 spectrometer. Most experiments were carried out in a flow mode, passing 0.84 ml/s of a gas mixture containing inert (He, Ar or N2) and N2O, NO, CO or mixtures of these gases continuously through the cell at atmospheric pressure. Each spectrum was recorded by addition of 256 scans and a resolution of 8 cm. ... [Pg.643]

Although the broad spectrum of Quantum Chemistry represented by the thirty or so articles contained in this volume only partially reflects the variety and richness of Berthier s preoccupations, it should convey to the coming generation of quantum chemists and to all readers the useful lesson of an outstanding chemist maintaining wide interests and resisting the drift of fashion. [Pg.476]

The problems discussed above may be circumvented by eliminating the mobile phase before measuring the spectra of the eluites, as first demonstrated by Shafer et al. [379] for pSFC-FTIR. Each eluite was deposited on a moving glass plate, on which a layer of powdered KC1 or KBr had been laid down from methanol slurry for diffuse reflectance spectroscopy (SFC-DRIFTS). Solvent elimination SFC-FTIR after deposition of the eluites on to a moving ZnSe substrate is quite straightforward the window is moved to the... [Pg.477]

In solvent-elimination LC-FTIR, basically three types of substrates and corresponding IR modes can be discerned, namely, powder substrates for diffuse reflectance (DRIFT) detection, metallic mirrors for reflection-absorption (R-A) spectrometry, and IR-transparent windows for transmission measurements [500]. The most favourable solvent-elimination LC-FTIR results have been obtained with IR-transparent deposition substrates that allow straightforward transmission measurements. Analyte morphology and/or transformation should always be taken into consideration during the interpretation of spectra obtained by solvent-elimination LC-FTIR. Dependent on the type of substrate and/or size of the deposited spots, often special optics such as a (diffuse) reflectance unit, a beam condenser or an FITR microscope are used to scan the deposited substances (typical diameter of the FITR beam, 20 pm). [Pg.492]

DRIFTS Diffuse reflectance infrared detector (see HECD)... [Pg.753]


See other pages where DRIFTS reflectance is mentioned: [Pg.240]    [Pg.237]    [Pg.72]    [Pg.232]    [Pg.278]    [Pg.240]    [Pg.237]    [Pg.72]    [Pg.232]    [Pg.278]    [Pg.1780]    [Pg.1781]    [Pg.14]    [Pg.268]    [Pg.269]    [Pg.286]    [Pg.286]    [Pg.286]    [Pg.199]    [Pg.893]    [Pg.293]    [Pg.143]    [Pg.232]    [Pg.73]    [Pg.209]    [Pg.543]    [Pg.180]    [Pg.182]    [Pg.463]    [Pg.464]    [Pg.172]    [Pg.533]    [Pg.533]    [Pg.534]   


SEARCH



Drift

Drifting

© 2024 chempedia.info