Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Double layer Helmholtz plane

Double layer, Helmholtz layer, Helmholtz plane —... [Pg.168]

IHP) (the Helmholtz condenser formula is used in connection with it), located at the surface of the layer of Stem adsorbed ions, and an outer Helmholtz plane (OHP), located on the plane of centers of the next layer of ions marking the beginning of the diffuse layer. These planes, marked IHP and OHP in Fig. V-3 are merely planes of average electrical property the actual local potentials, if they could be measured, must vary wildly between locations where there is an adsorbed ion and places where only water resides on the surface. For liquid surfaces, discussed in Section V-7C, the interface will not be smooth due to thermal waves (Section IV-3). Sweeney and co-workers applied gradient theory (see Chapter III) to model the electric double layer and interfacial tension of a hydrocarbon-aqueous electrolyte interface [27]. [Pg.179]

Pig. 3. Representation of the electrical double layer at a metal electrode—solution interface for the case where anions occupy the inner Helmholtz plane... [Pg.510]

Fig. 1. Schematic representation of the electrochemical or diffuse double layer showing the inner (IHP) and outer (OHP) Helmholtz planes and the... Fig. 1. Schematic representation of the electrochemical or diffuse double layer showing the inner (IHP) and outer (OHP) Helmholtz planes and the...
F r d ic Current. The double layer is a leaky capacitor because Faradaic current flows around it. This leaky nature can be represented by a voltage-dependent resistance placed in parallel and called the charge-transfer resistance. Basically, the electrochemical reaction at the electrode surface consists of four thermodynamically defined states, two each on either side of a transition state. These are (11) (/) oxidized species beyond the diffuse double layer and n electrons in the electrode and (2) oxidized species within the outer Helmholtz plane and n electrons in the electrode, on one side of the transition state and (J) reduced species within the outer Helmholtz plane and (4) reduced species beyond the diffuse double layer, on the other. [Pg.50]

Fig. 1. The structure of the electrical double layer where Q represents the solvent CD, specifically adsorbed anions 0, anions and (D, cations. The inner Helmholtz plane (IHP) is the center of specifically adsorbed ions. The outer Helmholtz plane (OHP) is the closest point of approach for solvated cations or molecules. O, the corresponding electric potential across the double layer, is also shown. Fig. 1. The structure of the electrical double layer where Q represents the solvent CD, specifically adsorbed anions 0, anions and (D, cations. The inner Helmholtz plane (IHP) is the center of specifically adsorbed ions. The outer Helmholtz plane (OHP) is the closest point of approach for solvated cations or molecules. O, the corresponding electric potential across the double layer, is also shown.
FIGURE 1-11 Schematic representation of the electrical double layer. IHP = inner Helmholtz plane OHP = outer Helmoltz plane. [Pg.19]

Fig. 4.1 Structure of the electric double layer and electric potential distribution at (A) a metal-electrolyte solution interface, (B) a semiconductor-electrolyte solution interface and (C) an interface of two immiscible electrolyte solutions (ITIES) in the absence of specific adsorption. The region between the electrode and the outer Helmholtz plane (OHP, at the distance jc2 from the electrode) contains a layer of oriented solvent molecules while in the Verwey and Niessen model of ITIES (C) this layer is absent... Fig. 4.1 Structure of the electric double layer and electric potential distribution at (A) a metal-electrolyte solution interface, (B) a semiconductor-electrolyte solution interface and (C) an interface of two immiscible electrolyte solutions (ITIES) in the absence of specific adsorption. The region between the electrode and the outer Helmholtz plane (OHP, at the distance jc2 from the electrode) contains a layer of oriented solvent molecules while in the Verwey and Niessen model of ITIES (C) this layer is absent...
By means of the thermodynamic theory of the double layer and the theory of the diffuse layer it is possible to determine the charge density ox corresponding to the adsorbed ions, i.e. ions in the inner Helmholtz plane, and the potential of the outer Helmholtz plane 2 in the presence of specific adsorption. [Pg.230]

If the electrolyte components can react chemically, it often occurs that, in the absence of current flow, they are in chemical equilibrium, while their formation or consumption during the electrode process results in a chemical reaction leading to renewal of equilibrium. Electroactive substances mostly enter the charge transfer reaction when they approach the electrode to a distance roughly equal to that of the outer Helmholtz plane (Section 5.3.1). It is, however, sometimes necessary that they first be adsorbed. Similarly, adsorption of the products of the electrode reaction affects the electrode reaction and often retards it. Sometimes, the electroinactive components of the solution are also adsorbed, leading to a change in the structure of the electrical double layer which makes the approach of the electroactive substances to the electrode easier or more difficult. Electroactive substances can also be formed through surface reactions of the adsorbed substances. Crystallization processes can also play a role in processes connected with the formation of the solid phase, e.g. in the cathodic deposition of metals. [Pg.261]

The Frumkin theory of the effect of the electrical double layer on the rate of the electrode reaction is a gross simplification. For example, the electrode reaction does not occur only at the outer Helmholtz plane but also at a somewhat greater distance from the electrode surface. More detailed considerations indicate, however, that Eq. (5.3.20) can still be used to describe the effect of the electrical double layer as a good approximation. [Pg.289]

Anions may exhibit a tendency toward specific adsorption at the O/S interface. This may be related in some way to the complexing affinity. This effect, occurring at the inner Helmholtz plane of the electrochemical double layer, may significantly change the charge transfer situation [cf. Section III(5(iii))]. [Pg.408]

Equation (2.33) now defines the double layer in the final model of the structure of the electrolyte near the electrode specifically adsorbed ions and solvent in the IHP, solvated ions forming a plane parallel to the electrode in the OHP and a dilfuse layer of ions having an excess of ions charged opposite to that on the electrode. The excess charge density in the latter region decays exponentially with distance away from the OHP. In addition, the Stern model allows some prediction of the relative importance of the diffuse vs. Helmholtz layers as a function of concentration. Table 2.1 shows... [Pg.57]

Fig. 2. Schematic diagram of the tunnel gap between sample and tip, with the extension of the electric double layers indicated by the outer Helmholtz plane(OHP). (a) No tip interaction at large tip-sample separation, (b) Overlap of the electric double layers at a distance s = 0.6 nm, which can be achieved by conventional imaging conditions (e.g., Uj = 50 mV It = 2 nA Rt = 2.5 x 107 Q). Inset Dependence of the tunnel gap s on the tunnel resistance Rt for a tunnel barrier of 1.5 eV. Fig. 2. Schematic diagram of the tunnel gap between sample and tip, with the extension of the electric double layers indicated by the outer Helmholtz plane(OHP). (a) No tip interaction at large tip-sample separation, (b) Overlap of the electric double layers at a distance s = 0.6 nm, which can be achieved by conventional imaging conditions (e.g., Uj = 50 mV It = 2 nA Rt = 2.5 x 107 Q). Inset Dependence of the tunnel gap s on the tunnel resistance Rt for a tunnel barrier of 1.5 eV.
The electrified interface is generally referred to as the electric double layer (EDL). This name originates from the simple parallel plate capacitor model of the interface attributed to Helmholtz.1,9 In this model, the charge on the surface of the electrode is balanced by a plane of charge (in the form of nonspecifically adsorbed ions) equal in magnitude, but opposite in sign, in the solution. These ions have only a coulombic interaction with the electrode surface, and the plane they form is called the outer Helmholtz plane (OHP). Helmholtz s model assumes a linear variation of potential from the electrode to the OHP. The bulk solution begins immediately beyond the OHP and is constant in potential (see Fig. 1). [Pg.308]

It is important to stress that the activity coefficients (and the concentrations) in equation 16.18 refer to the species close to the surface of the electrode, and so can be very different from the values in the bulk solution. This is portrayed in figure 16.6, which displays the Stern model of the double layer [332], One (positive) layer is formed by the charges at the surface of the electrode the other layer, called the outer Helmholtz plane (OHP), is created by the solvated ions with negative charge. Beyond the OHP, the concentration of anions decreases until it reaches the bulk value. Although more sophisticated double-layer models have been proposed [332], it is apparent from figure 16.6 that the local environment of the species that are close to the electrode is distinct from that in the bulk solution. Therefore, the activity coefficients are also different. As these quantities are not... [Pg.234]

Figure 16.6 The Stern model of the double layer. The outer Helmholtz plane (OHP) and the width of the diffusion layer (8) are indicated. The shaded circles represent solvent molecules. The drawing is not to scale The width of the diffusion layer is several orders of magnitude larger than molecular sizes. Figure 16.6 The Stern model of the double layer. The outer Helmholtz plane (OHP) and the width of the diffusion layer (8) are indicated. The shaded circles represent solvent molecules. The drawing is not to scale The width of the diffusion layer is several orders of magnitude larger than molecular sizes.
For a long time, the electric double layer was compared to a capacitor with two plates, one of which was the charged metal and the other, the ions in the solution. In the absence of specific adsorption, the two plates were viewed as separated only by a layer of solvent. This model was later modified by Stem, who took into account the existence of the diffuse layer. He combined both concepts, postulating that the double layer consists of a rigid part called the inner—or Helmholtz—layer, and a diffuse layer of ions extending from the outer Helmholtz plane into the bulk of the solution. Accordingly, the potential drop between the metal and the bulk consists of two parts ... [Pg.3]

Fig. 5-8. An interfadal double layer model (triple-layer model) SS = solid surface OHP = outer Helmholtz plane inner potential tt z excess charge <2h = distance from the solid surface to the closest approach of hydrated ions (Helmluritz layer thickness) C = electric capacity. Fig. 5-8. An interfadal double layer model (triple-layer model) SS = solid surface OHP = outer Helmholtz plane inner potential tt z excess charge <2h = distance from the solid surface to the closest approach of hydrated ions (Helmluritz layer thickness) C = electric capacity.
Chemisorption of anions at the electrode interface involves dehydration of hydrated anions followed by adsorption of dehydrated anions which, then, penetrate into the compact double layer to contact the interface directly, this result is called the contact adsorption or specific adsorption. The plane of the contact adsorption of dehydrated anions is occasionally called the inner Helmholtz plane... [Pg.140]

In the course of ionic contact adsorption on the interface of metal electrode, hydrated ions are first dehydrated and then adsorbed at the inner Helmholtz plane in the compact layer as shown in Fig. 5-27 and as described in Sec. 5.6.1. In the interfacial double layer containing adsorbed ions, the combined charge of motal and adsorbed ions = z eF on the metal side is balanced with the... [Pg.153]

Fig. 6-99. An interfacial electric double layer on semiconductor electrodes a = charge of surface states 0.1 = interfadal charge of adsorbed ions IHP = inner Helmholtz plane. Fig. 6-99. An interfacial electric double layer on semiconductor electrodes a = charge of surface states 0.1 = interfadal charge of adsorbed ions IHP = inner Helmholtz plane.
Figure 5.4 Schematic representation of the double-layer around an electrode, showing the positions of the inner and outer Helmholtz planes, and the way that ionic charges are separated. The circles represent solvated ions. Figure 5.4 Schematic representation of the double-layer around an electrode, showing the positions of the inner and outer Helmholtz planes, and the way that ionic charges are separated. The circles represent solvated ions.

See other pages where Double layer Helmholtz plane is mentioned: [Pg.2752]    [Pg.49]    [Pg.63]    [Pg.673]    [Pg.98]    [Pg.210]    [Pg.289]    [Pg.442]    [Pg.50]    [Pg.52]    [Pg.54]    [Pg.56]    [Pg.58]    [Pg.151]    [Pg.229]    [Pg.584]    [Pg.3]    [Pg.7]    [Pg.128]    [Pg.131]    [Pg.215]    [Pg.8]    [Pg.19]    [Pg.28]    [Pg.45]   
See also in sourсe #XX -- [ Pg.161 ]




SEARCH



Helmholtz

Helmholtz double layer

Helmholtz layer

Helmholtz plane

Helmholtz plane layer

© 2024 chempedia.info