Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Double bond decomposition

So nitrenes could not be trapped in this reaction by insertion into C—H bonds or olefinic double bonds. Decomposition temperatures of several azides and their corresponding rate constants (k) are listed in Table 1. Unlike most organic azides. [Pg.92]

Pyrolysis experiments on silicon and germanium hydrides have led to interesting conclusions about bond stabilities. Thermal decomposition of disilane 3) occurs at temperatures several hundred degrees lower than that required for thermal cracking of simple hydrocarbons (J67). It seems reasonable to suppose, however, that the relative polarities of the Si—H and C—H bonds are important in this connection, and that the pyrolysis pathways will be dissimilar. Indeed, ethylene is a major product of the cracking of ethane 367), while silicon will not form stable double bonds. Decomposition of various hydrides and mixtures of hydrides, followed by vapor-phase chromatographic analysis of the products, showed that Ge—Ge bonds are more readily broken than Si—Ge bonds, while Si—Si links were not broken at all under the conditions employed 368). However, generalities as to the stabilities of M—M bonds are not yet possible. [Pg.78]

The limitations of this reagent are several. It caimot be used to replace a single unactivated halogen atom with the exception of the chloromethyl ether (eq. 5) to form difluoromethyl fluoromethyl ether [461 -63-2]. It also caimot be used to replace a halogen attached to a carbon—carbon double bond. Fluorination of functional group compounds, eg, esters, sulfides, ketones, acids, and aldehydes, produces decomposition products caused by scission of the carbon chains. [Pg.267]

Peroxyesters, particularly those with a-hydrogens or conjugated double bonds, are susceptible to iaduced decomposition under certain conditions, but they are generally less susceptible than diacyl peroxides. Lower molecular weight peroxyesters that have some water solubiUty can be hydroly2ed. [Pg.225]

Reactions. Heating an aqueous solution of malonic acid above 70°C results in its decomposition to acetic acid and carbon dioxide. Malonic acid is a useful tool for synthesizing a-unsaturated carboxyUc acids because of its abiUty to undergo decarboxylation and condensation with aldehydes or ketones at the methylene group. Cinnamic acids are formed from the reaction of malonic acid and benzaldehyde derivatives (1). If aUphatic aldehydes are used acryhc acids result (2). Similarly this facile decarboxylation combined with the condensation with an activated double bond yields a-substituted acetic acid derivatives. For example, 4-thiazohdine acetic acids (2) are readily prepared from 2,5-dihydro-l,3-thiazoles (3). A further feature of malonic acid is that it does not form an anhydride when heated with phosphorous pentoxide [1314-56-3] but rather carbon suboxide [504-64-3] [0=C=C=0], a toxic gas that reacts with water to reform malonic acid. [Pg.465]

When sublimed, anthraquinone forms a pale yeUow, crystalline material, needle-like in shape. Unlike anthracene, it exhibits no fluorescence. It melts at 286°C and boils at 379°—381°C. At much higher temperatures, decomposition occurs. Anthraquinone has only a slight solubiUty in alcohol or benzene and is best recrystallized from glacial acetic acid or high boiling solvents such as nitrobenzene or dichlorobenzene. It is very soluble in concentrated sulfuric acid. In methanol, uv absorptions of anthraquinone are at 250 nm (e = 4.98), 270 nm (4.5), and 325 nm (4.02) (4). In the it spectmm, the double aUyflc ketone absorbs at 5.95 p.m (1681 cm ), and the aromatic double bond absorbs at 6.25 p.m (1600 cm ) and 6.30 pm (1587 cm ). [Pg.420]

Sorbic acid is oxidized rapidly in the presence of molecular oxygen or peroxide compounds. The decomposition products indicate that the double bond farthest from the carboxyl group is oxidized (11). More complete oxidation leads to acetaldehyde, acetic acid, fumaraldehyde, fumaric acid, and polymeric products. Sorbic acid undergoes Diels-Alder reactions with many dienophiles and undergoes self-dimerization, which leads to eight possible isomeric Diels-Alder stmctures (12). [Pg.282]

Reactions of Vinyl Ethers. Vinyl ethers undergo the typical reactions of activated carbon—carbon double bonds. A key reaction of VEs is acid-catalyzed hydrolysis to the corresponding alcohol and acetaldehyde, ie, addition of water followed by decomposition of the hemiacetal. Eor example, for MVE, the reaction is... [Pg.514]

IV-Nitrosqanilides are an alternative source of aryl radicals. There is a close mechanistie relationship to the decomposition of azo compounds. The JV-nitrosoanilides rearrange to intermediates that have a nitrogen-nitrogen double bond. The intermediate then decomposes to generate aryl radieals. ... [Pg.674]

Ozone cracking is a physicochemical phenomenon. Ozone attack on olefinic double bonds causes chain scission and the formation of decomposition products. The first step in the reaction is the formation of a relatively unstable primary ozonide, which cleaves to an aldehyde or ketone and a carbonyl. Subsequent recombination of the aldehyde and the carbonyl groups produces a second ozonide [58]. Cross-linking products may also be formed, especially with rubbers containing disubstituted carbon-carbon double bonds (e.g. butyl rubber, styrene-butadiene rubber), due to the attack of the carbonyl groups (produced by cleavage of primary ozonides) on the rubber carbon-carbon double bonds. [Pg.645]

The homolysis of tertiary hypochlorites for the production of oxy radicals is well known." The ease with which secondary hypohalites decompose to ketones has hampered the application of hypohalites for transannular reactions. However the tendency for the base-catalyzed heterolytic decomposition decreases as one passes from hypochlorites to hypobromites tohypoidites. Therefore the suitability of hypohalites for functionalization at the angular positions in steroids should increase in the same order. Since hypoidites (or iodine) do not react readily with ketones or carbon-carbon double bonds under neutral conditions hypoiodite reactions are more generally applicable than hypochlorite or hypobromite decompositions. [Pg.246]

The acid catalyzed hydration of olefins is frequently attended by decomposition or rearrangement of the acid-sensitive substrate. A simple and mild procedure for the Markovnikov hydration of double bonds has recently been devised by Brown and co-workers 13). This reaction, which appears to be remarkably free of rearrangements, initially involves the addition of mercuric acetate to the double bond to give the 1,2-... [Pg.60]

As far as oxidation of the polymer with oxygen of the air is concerned, the /3-hydrogen atom in the neighborhood of the C=C double bond is the most likely one to be attacked by oxygen with the formation of hydroperoxide which undergoes further decomposition [19]. OH and CO groups have been detected spectroscopically in the polymer [67,83]. [Pg.325]

For the catalyst system WCU-CsHbAICIs-CzHsOH, Calderon et al. (3, 22, 46) also proposed a kinetic scheme in which one metal atom, as the active center, is involved. According to this scheme, which was applied by Calderon to both acyclic and cyclic alkenes, the product molecules do not leave the complex in pairs. Rather, after each transalkylidenation step an exchange step occurs, in which one coordinated double bond is exchanged for the double bond of an incoming molecule. In this model the decomposition of the complex that is formed in the transalkylidenation step is specified, whereas in the models discussed earlier it is assumed that the decom-plexation steps, or the desorption steps, are kinetically not significant. [Pg.164]

Aryl radicals are produced in the decomposition of alkylazobenzenes and diazonium salts, and by f)-scission of aroyloxy radicals (Scheme 3.73). Aryl radicals have been reported to react by aromatic subsitution (e.g. of Sh) or abstract hydrogen (e.g. from MMA10) in competition with adding to a monomer double bond. However, these processes typically account for <1% of the total. The degree of specificity for tail vs head addition is also very high. Significant head addition has been observed only where tail addition is retarded by sleric factors e.g. methyl crotonate10 and -substituted methyl vinyl ketones 79, 84). [Pg.117]

Compounds with a thiocarbonyl a to the S-S bond such as the dithiuram (e.g. 8f2Al and xanthogen disulfides (e.g. 9)M have transfer constants that are much higher than other disulfides. In part, this may be due to the availability of another mechanism for induced decomposition (Scheme 6.9) involving addition to the C S double bond and subsequent fragmentation. Thiocarbonyl double bonds are very reactive towards addition and an addition-fragmentation mechanism has been demonstrated for related compounds (Section 6.2.3.5). [Pg.292]

The bond p- to the double bond of the unsaturated disproportionation product 2 is also weaker than other backbone bonds.10 30,32 31 However, it is now believed that the instability of unsaturated linkages is due to a radical-induced decomposition mechanism (Scheme 8.7).30 This mechanism for initiating degradation is analogous to the addition-fragmentation chain transfer observed in polymerizations carried out in the presence of 2 at lower temperatures (see 6.2.3.4, 7.6.5 and 9.5.2). [Pg.418]

Since a similarity between the rates of decomposition of thiirene dioxide complexes and those of thiirane dioxides was found, it was suggested103 that upon coordination the carbon-carbon bond order of thiirene dioxides decreases and the ligand becomes thiirane dioxide-like. The role of the metal is thus to saturate the carbon-carbon double bond so that the reactivity of the coordinated thiirene dioxide approaches that of the thermally less stable thiirane dioxide. [Pg.400]

Breakdown of Certain Double-Bond Compounds. The most common method of forming nitrenes is photolytic or thermal decomposition of azides," " ... [Pg.253]

The decomposition of N2 O4 requires a bond to break. This is the reason why the decomposition has a positive A 77 °. At the same time, the number of molecules doubles during decomposition, which is the reason AS° has a positive value. The positive enthalpy change means that energy Is removed from the surroundings and constrained, whereas the positive entropy change means that matter is dispersed. At temperatures below 315 K, the enthalpy term dominates and decomposition is not spontaneous, but at temperatures above 315 K, the entropy term dominates and decomposition is spontaneous. [Pg.1006]


See other pages where Double bond decomposition is mentioned: [Pg.294]    [Pg.375]    [Pg.101]    [Pg.80]    [Pg.342]    [Pg.437]    [Pg.236]    [Pg.261]    [Pg.436]    [Pg.124]    [Pg.24]    [Pg.195]    [Pg.700]    [Pg.1104]    [Pg.155]    [Pg.60]    [Pg.222]    [Pg.32]    [Pg.412]    [Pg.127]    [Pg.316]    [Pg.227]    [Pg.56]    [Pg.1522]    [Pg.10]    [Pg.344]    [Pg.18]    [Pg.76]    [Pg.361]   


SEARCH



Double: bonds, 180 decomposition atoms

© 2024 chempedia.info