Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Divalent common

Divalent molybdenum compounds occur in mononuclear, dinuclear, and hexanuclear forms. Selected examples are shown in Figure 6. The mononuclear compounds are mostiy in the realm of organometaUic chemistry (30—32). Seven-coordinate complexes are common and include MoX2(CO)2(PR3)2, where X = Cl, Br, and I, and R = alkyl MoCl2(P(CH3)3)4, heptakis(isonitrile) complexes of the form Mo(CNR) 2 (Fig. 6d), and their chloro-substituted derivatives, eg, Mo(CNR)3CR. The latter undergo reductive coupling to form C—C bonds in the molybdenum coordination sphere (33). [Pg.473]

Putile Ceramic Pigments. StmcturaHy, aH mtile pigments are derived from the most stable titanium dioxide stmcture, ie, mtile. The crystal stmcture of mtile is very common for AX2-type compounds such as the oxides of four valent metals, eg, Ti, V, Nb, Mo, W, Mn, Ru, Ge, Sn, Pb, and Te as weH as haHdes of divalent elements, eg, fluorides of Mg, Mn, Fe, Co, Ni, and Zn. [Pg.13]

Lewis acids are defined as molecules that act as electron-pair acceptors. The proton is an important special case, but many other species can play an important role in the catalysis of organic reactions. The most important in organic reactions are metal cations and covalent compounds of metals. Metal cations that play prominent roles as catalysts include the alkali-metal monocations Li+, Na+, K+, Cs+, and Rb+, divalent ions such as Mg +, Ca +, and Zn, marry of the transition-metal cations, and certain lanthanides. The most commonly employed of the covalent compounds include boron trifluoride, aluminum chloride, titanium tetrachloride, and tin tetrachloride. Various other derivatives of boron, aluminum, and titanium also are employed as Lewis acid catalysts. [Pg.233]

These interactions are most commonly observed for divalent chalcogen atoms and the nitrogen atom (the electron donor D) lies within the X-E-Y (E = S, Se, Te) plane, preferably along the extension of one of the covalent bonds as in 15.3. This anisotropy is a clear indication that these short E N contacts have some bonding character, i.e., they are subject to the geometric restrictions of orbital overlap. Eor example, in the diselenide 15.4 the nitrogen lone pairs are clearly oriented towards the Se-Se linkage. ... [Pg.295]

These are of two main types compounds of M", which for platinum have been known since the beginning of this century and commonly involve the stable [PtMes] group and compounds of the divalent metals, which were first studied by J. Chatt and co-workers in the late 1950 s and are commonly of the type [MR2L2] (L = phosphine). In the Pt" compounds the metal is always octahedrally coordinated and this is frequently achieved in interesting ways. Thus the trimethyl halides, conveniently obtained... [Pg.1167]

Although 2H- and 4//-thiadiazines with divalent sulfur are virtually unknown, both isomers have been prepared as the 1-oxides and, more commonly, as the 1,1-dioxides 109 (X = SO2) and 110 (X = SO2). [Pg.284]

Some microbial exopolysaccharides contain the inorganic substituents phosphate and sulphate. Phosphate has been found in exopolysaccharide from bacteria of medical importance, including Escherichia coli. Sulphate is far less common than phosphate and has only been found in spedes of cyanobaderia. In addition to these inorganic components, which form part of the structure of some exopolysaccharides, all polyanionic polymers will bind a mixture of cations. Exopolysaccharides are, therefore, purified in the salt form. The strength of binding of the various cations depend on the exopolysaccharide some bind the divalent cations calrium, barium and strontium very strongly, whereas others prefer certain monovalent cations, eg Na ... [Pg.197]

Thixotropic behaviour of pectins can be observed with the drop of their degree of esterification, and with the onset of a distinct reactivity towards divalent cations. The common measuring principal is pictured in figure 3. [Pg.412]

The effect of pH and cation concentration on pectinesterase (PE) activation and permeation on 30 kD MWCO ultrafiltration (UF) membrane was evaluated. In order of increasing effectiveness, PE activity was stimulated by monovalent and divalent cations, poly amines and trivalent cations. A similar trend was observed for permeation on UF membranes. Cation addition and higher pH releases PE from an inactive complex, increases activity, and increases permeation. Higher cation concentration decreases activity and permeation. These results suggest a common mechanism is involved in PE activation and permeation. [Pg.475]

In such systems as (M, Mj (i/2))X (M, monovalent cation Mj, divalent cation X, common anion), the much stronger interaction of M2 with X leads to restricted internal mobility of Mi. This is called the tranquilization effect by M2 on the internal mobility of Mi. This effect is clear when Mj is a divalent or trivalent cation. However, it also occurs in binary alkali systems such as (Na, K)OH. The isotherms belong to type II (Fig. 2) % decreases with increasing concentration of Na. Since the ionic radius of OH-is as small as F", the Coulombic attraction of Na-OH is considerably stronger than that of K-OH. [Pg.138]

Thermal reduction at 623 K by means of CO is a common method of producing reduced and catalytically active chromium centers. In this case the induction period in the successive ethylene polymerization is replaced by a very short delay consistent with initial adsorption of ethylene on reduce chromium centers and formation of active precursors. In the CO-reduced catalyst, CO2 in the gas phase is the only product and chromium is found to have an average oxidation number just above 2 [4,7,44,65,66], comprised of mainly Cr(II) and very small amount of Cr(III) species (presumably as Q -Cr203 [66]). Fubini et al. [47] reported that reduction in CO at 623 K of a diluted Cr(VI)/Si02 sample (1 wt. % Cr) yields 98% of the silica-supported chromium in the +2 oxidation state, as determined from oxygen uptake measurements. The remaining 2 wt. % of the metal was proposed to be clustered in a-chromia-like particles. As the oxidation product (CO2) is not adsorbed on the surface and CO is fully desorbed from Cr(II) at 623 K (reduction temperature), the resulting catalyst acquires a model character in fact, the siliceous part of the surface is the same of pure silica treated at the same temperature and the anchored chromium is all in the divalent state. [Pg.11]

Ito, K. and Kumamaru, T., Separation and detection of common mono- and divalent cations by ion chromatography with an ODS column and conduc-tivity/UV detection, /. Chromatogr. A, 850, 247, 1999. [Pg.301]

Some strains of P. aeruginosa are resistant to benzalkonium chloride and, in fact, can be grown in solutions concentrated in this agent. This has caused great concern because of the virulent nature of this organism in ocular infections, as discussed previously. Thus, it was an important finding in 1958 that the acquired resistance could be eliminated by the presence of ethylenediaminetetracetic acid (sodium edetate) in the formulation. This action of EDTA has been correlated with its ability to chelate divalent cations, and it is commonly used as a preservative aid [125]. The use of disodium EDTA, where compatible, is recommended in concentrations up to 0.1%. [Pg.433]

As demonstrated in Section 5.2, the electrode potential is determined by the rates of two opposing electrode reactions. The reactant in one of these reactions is always identical with the product of the other. However, the electrode potential can be determined by two electrode reactions that have nothing in common. For example, the dissolution of zinc in a mineral acid involves the evolution of hydrogen on the zinc surface with simultaneous ionization of zinc, where the divalent zinc ions diffuse away from the electrode. The sum of the partial currents corresponding to these two processes must equal zero (if the charging current for a change in the electrode potential is neglected). The potential attained by the metal under these conditions is termed the mixed potential Emix. If the polarization curves for both processes are known, then conditions can be determined such that the absolute values of the cathodic and anodic currents are identical (see Fig. 5.54A). The rate of dissolution of zinc is proportional to the partial anodic current. [Pg.392]

The pH of a medium also impacts the formation of metal-phosphate precipitates. For example, divalent ionic cadmium (Cd2+) concentrations rapidly decline as both phosphate concentration and pH increase. Sandrin and Hoffman121 determined that when no phosphate is present in a commonly used mineral salts medium, the concentration of divalent ionic cadmium remains relatively constant until an abrupt decline above pH 8. When 15 mM inorganic phosphate is added to the medium, divalent cadmium ion concentrations rapidly decline at pH values above only 6. [Pg.420]

It has become common to classify all molecular compounds, which fulfill the above characteristics, as carbene analogs 9,13>. As a consequence, compounds of divalent silicon, germanium, tin, and lead may be regarded as carbene-like and are therefore called silylenes, germylenes, stannylenes, and plumbylenes. In contrast to carbenes they have one property in common the energetically most favorable electronic state is the singlet 1a2 found by experiments and calculations 9). [Pg.10]


See other pages where Divalent common is mentioned: [Pg.201]    [Pg.318]    [Pg.327]    [Pg.150]    [Pg.77]    [Pg.291]    [Pg.504]    [Pg.61]    [Pg.296]    [Pg.67]    [Pg.138]    [Pg.403]    [Pg.555]    [Pg.53]    [Pg.3]    [Pg.24]    [Pg.542]    [Pg.713]    [Pg.77]    [Pg.1088]    [Pg.326]    [Pg.353]    [Pg.877]    [Pg.498]    [Pg.297]    [Pg.159]    [Pg.168]    [Pg.187]    [Pg.154]    [Pg.78]    [Pg.80]    [Pg.51]    [Pg.27]    [Pg.34]    [Pg.68]   
See also in sourсe #XX -- [ Pg.243 ]




SEARCH



Divalent

Divalents

© 2024 chempedia.info