Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Distillation Curves Map

Figure 9.5 Sketching a Residue Curve Map from characteristic points 9.1.2 Distillation Curves Map... Figure 9.5 Sketching a Residue Curve Map from characteristic points 9.1.2 Distillation Curves Map...
Hence, for each component the concentration of a vapour rising from the tray ( +l) equals the concentration of the liquid flowing from the tray n. This relation defines a distillation curve as the locus of the tray compositions at total reflux. A distillation curve map (DCM) can be generated easily by choosing a tray liquid composition , and stepping up and down by a series of bubble and dew points. [Pg.357]

D/B = distillate-to-bottoms ratio, RCM = residue curve map, DRD = distillation region diagram, and MSA = mass separating agent. [Pg.453]

Fig. 3. Residue curve map for a ternary mixture with a distillation boundary mnning from pure component D to the binary azeotrope C. Fig. 3. Residue curve map for a ternary mixture with a distillation boundary mnning from pure component D to the binary azeotrope C.
Residue curve maps would be limited usebilness if they could only be generated experimentally. Fortunately that is not the case. The simple distillation process can be described (14) by the set of equations ... [Pg.182]

Even though the simple distillation process has no practical use as a method for separating mixtures, simple distillation residue curve maps have extremely usehil appHcations. These maps can be used to test the consistency of experimental azeotropic data (16,17,19) to predict the order and content of the cuts in batch distillation (20—22) and, in continuous distillation, to determine whether a given mixture is separable by distillation, identify feasible entrainers/solvents, predict the attainable product compositions, quaHtatively predict the composition profile shape, and synthesize the corresponding distillation sequences (16,23—30). By identifying the limited separations achievable by distillation, residue curve maps are also usehil in synthesizing separation sequences combining distillation with other methods. [Pg.182]

As an example, consider the residue curve map for the nonazeotropic mixture shown in Eigure 2. It has no distillation boundary so the mixture can be separated into pure components by either the dkect or indkect sequence (Eig. 4). In the dkect sequence the unstable node (light component, L) is taken overhead in the first column and the bottom stream is essentially a binary mixture of the intermediate, I, and heavy, H, components. In the binary I—H mixture, I has the lowest boiling temperature (an unstable node) so it is recovered as the distillate in the second column and the stable node, H, is the corresponding bottoms stream. The indkect sequence removes the stable node (heavy component) from the bottom of the first column and the overhead stream is an essentially binary L—I mixture. Then in the second column the unstable node, L, is taken overhead and I is recovered in the bottoms. [Pg.182]

The overwhelming majority of all ternary mixtures that can potentially exist are represented by only 113 different residue curve maps (35). Reference 24 contains sketches of 87 of these maps. For each type of separation objective, these 113 maps can be subdivided into those that can potentially meet the objective, ie, residue curve maps where the desired pure component and/or azeotropic products He in the same distillation region, and those that carmot. Thus knowing the residue curve for the mixture to be separated is sufficient to determine if a given separation objective is feasible, but not whether the objective can be achieved economically. [Pg.184]

All extractive distillations correspond to one of three possible residue curve maps one for mixtures containing minimum boiling azeotropes, one for mixtures containing maximum boiling azeotropes, and one for nonazeotropic mixtures. Thus extractive distillations can be divided into these three categories. [Pg.186]

Minimum Boiling Azeotropes. AH extractive distillations of binary minimum boiling azeotropic mixtures are represented by the residue curve map and column sequence shown in Figure 6b. Typical tray-by-tray composition profiles are shown in Figure 7. [Pg.186]

Fig. 10. Residue curve map for separating a maximum boiling azeotrope using a high boiling solvent where (-----------------) represents the distillation boundary and... Fig. 10. Residue curve map for separating a maximum boiling azeotrope using a high boiling solvent where (-----------------) represents the distillation boundary and...
As a starting point for identifying candidate solvents, all compounds having boiling points below that of any component in the mixture to be separated should be eliminated. This is necessary to yield the correct residue curve map for extractive distillation, but this process implicitly rules out other forms of homogeneous azeotropic distillation. In fact, compounds which boil as much as 50°C or more above the mixture have been recommended (68) in order to minimize the likelihood of azeotrope formation. On the other hand, the solvent should not bod so high that excessive temperatures are required in the solvent recovery column. [Pg.189]

Historically azeotropic distillation processes were developed on an individual basis using experimentation to guide the design. The use of residue curve maps as a vehicle to explain the behavior of entire sequences of heterogeneous azeotropic distillation columns as weU as the individual columns that make up the sequence provides a unifying framework for design. This process can be appHed rapidly, and produces an exceUent starting point for detailed simulations and experiments. [Pg.190]

Residue Curve Maps. Residue curve maps are useful for representing the infinite reflux behavior of continuous distillation columns and for getting quick estimates of the feasibiHty of carrying out a desired separation. In a heterogeneous simple distillation process, a multicomponent partially miscible Hquid mixture is vaporized ia a stiH and the vapor that is boiled off is treated as being ia phase equiHbrium with all the coexistiag Hquid phases. [Pg.192]

RESIDUE CURVE MAPS AND DISTILLATION REGION DIAGRAMS... [Pg.1294]

FIG. 13-58 (Continued) Residue curve maps, (c) Ethanol-cyclohexane-water system containing four minimum-hoiling azeotropes and three distillation regions. [Pg.1295]

Exploitation of Homogeneous Azeotropes Homogeneous azeotropic distillation refers to a flowsheet structure in which azeotrope formation is exploited or avoided in order to accomplish the desired separation in one or more distillation columns. The azeotropes in the system either do not exhibit two-hquid-phase behavior or the hquid-phase behavior is not or cannot be exploited in the separation sequence. The structure of a particular sequence will depend on the geometry of the residue curve map or distillation region diagram for the feed mixture-entrainer system. Two approaches are possible ... [Pg.1307]

As mentioned previously, ternaiy mixtures can be represented by 125 different residue curve maps or distillation region diagrams. However, feasible distillation sequences using the first approach can be developed for breaking homogeneous binaiy azeotropes by the addition of a third component only for those more restricted systems that do not have a distillation boundaiy connected to the azeotrope and for which one of the original components is a node. For example, from... [Pg.1307]

The transformed variables describe the system composition with or without reaction and sum to unity as do Xi and yi. The condition for azeotropy becomes X, = Y,. Barbosa and Doherty have shown that phase and distillation diagrams constructed using the transformed composition coordinates have the same properties as phase and distillation region diagrams for nonreactive systems and similarly can be used to assist in design feasibility and operability studies [Chem Eng Sci, 43, 529, 1523, and 2377 (1988a,b,c)]. A residue curve map in transformed coordinates for the reactive system methanol-acetic acid-methyl acetate-water is shown in Fig. 13-76. Note that the nonreactive azeotrope between water and methyl acetate has disappeared, while the methyl acetate-methanol azeotrope remains intact. Only... [Pg.1320]

Figure 12.13 The residue curve maps can be divided into regions by distillation boundaries. Figure 12.13 The residue curve maps can be divided into regions by distillation boundaries.

See other pages where Distillation Curves Map is mentioned: [Pg.234]    [Pg.351]    [Pg.389]    [Pg.234]    [Pg.351]    [Pg.389]    [Pg.446]    [Pg.455]    [Pg.456]    [Pg.181]    [Pg.182]    [Pg.182]    [Pg.183]    [Pg.184]    [Pg.185]    [Pg.186]    [Pg.188]    [Pg.189]    [Pg.189]    [Pg.193]    [Pg.193]    [Pg.194]    [Pg.198]    [Pg.198]    [Pg.199]    [Pg.1247]    [Pg.1305]    [Pg.1308]    [Pg.1308]    [Pg.1312]    [Pg.1315]    [Pg.240]    [Pg.241]   
See also in sourсe #XX -- [ Pg.353 ]




SEARCH



Distillation curves

Residue Curve Maps and Distillation Region Diagrams

© 2024 chempedia.info