Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Distance measures methods

In case of passive tip, when feedback effect is not available other distance measuring method has to be selected. Double barrel tip, one barrel for imaging, the other one for distance measuring, has been successfully applied [51,52]. In case of pH imaging double function antimony tip [62] could be used for both distance measurement (amperometric mode) and potentiometric mode (pH imaging). The constant height imaging mode is appropriate in case of thin film samples. It requires simpler apparatus. [Pg.295]

All described sensor probes scan an edge of the same material to get the characteristic step response of each system. The derivation of this curve (see eq.(4) ) causes the impulse responses. The measurement frequency is 100 kHz, the distance between sensor and structure 0. Chapter 4.2.1. and 4.2.2. compare several sensors and measurement methods and show the importance of the impulse response for the comparison. [Pg.369]

In particular, the known stress calibration method was chosen, therefore 6 rosetta strain gauges (R1-R6) on the shell and 7 (R7-R13) on the the head were applied. Their distances measured from the head centre are listed in table 1. R3 and R4 were applied only to check a uniform stress level on the shell surface. [Pg.411]

Proximity to Breathing Zone. Whereas all exposure measurement methods attempt to sample from air that is likely to be inhaled, some methods do so better than others. A sampler fixed some distance away from a breathing area is not usually accurate in measuring exposure. Even using mobile samplers that move with the worker, the few centimeters in distance from the nose and mouth to the position of the sampler, has been found to make a difference. [Pg.108]

A method which competes with interferometric distance measurement is laser Doppler displacement. In this approach the Doppler shift of the beam reflected from a target is measured and integrated to obtain displacement. This method also is best suited to use indoors at distances no more than a few hundred meters. Table 2 compares some of the characteristics of these laser-based methods of distance measurement. [Pg.14]

Because all measurement methods and instruments are sensitive to the velocity profile, the choice of the measurement cross-section is of vital importance. In most ventilation systems there is seldom enough straight duct to allow a fully developed velocity profile to develop, which is the most favorable for flow measurement. Thus, the principle in selecting the measurement cross-section is to find the place where the velocity profile is as near to the fully developed profile as possible. In practice the distance from the nearest source of disturbance upstream is maximized, ensuring that the distance to the nearest downstream disturbance is at least 3 to 5 duct diameters. [Pg.1168]

The effective length is defined as the measured center distance plus the outside circumference of one of the inspection pulleys. This measurement method accounts for the modulus of elasticity, or stretch ability, and dimensional variations among belts with the same cross-section. [Pg.971]

We introduced the technique for measuring the weak interaction forces acting between two particles using the photon force measurement method. Compared with the previous typically used methods, such as cross-correlation analysis, this technique makes it possible to evaluate the interaction forces without a priori information, such as media viscosity, particle mass and size. In this chapter, we focused especially on the hydrodynamic force as the interaction between particles and measured the interaction force by the potential analysis method when changing the distance between particles. As a result, when the particles were dose to each other, the two-dimensional plots of the kinetic potentials for each particle were distorted in the diagonal direction due to the increase in the interaction force. From the results, we evaluated the interaction coeffidents and confirmed that the dependence of the... [Pg.129]

As with conductivity measurements, methods and results of theoretical treatments of CT in DNA have varied significantly. Mechanisms invoking hopping, tunneling, superexchange, or even band delocalization have been proposed to explain CT processes in DNA (please refer to other reviews in this text). Significantly, many calculations predicted that the distance dependence of CT in DNA should be comparable to that observed in the a-systems of proteins [26]. This prediction has not been realized experimentally. The dichotomy between theory and experiment may be related to the fact that many early studies gave insufficient consideration to the unique properties of the DNA molecule. Consequently, CT models derived for typical conductors, or even those based on other biomolecules such as proteins, were not adequate for DNA. [Pg.80]

The continued use of aw in foods does not preclude the use of other concepts or measurement methods, such as the food polymer science approach proposed by Slade and Levine (1991) or rotational and translation mobility as measured by NMR. Rather, it may be most useful to combine these various approaches, recognizing the strengths, perspective (i.e., distance and time scales), and limitations of each. Then, each approach can be utilized where it is most applicable so as to build a multilevel understanding of the workings of specific food systems. [Pg.27]

The distance between object points is considered as an inverse similarity of the objects. This similarity depends on the variables used and on the distance measure applied. The distances between the objects can be collected in a distance matrk. Most used is the euclidean distance, which is the commonly used distance, extended to more than two or three dimensions. Other distance measures (city block distance, correlation coefficient) can be applied of special importance is the mahalanobis distance which considers the spatial distribution of the object points (the correlation between the variables). Based on the Mahalanobis distance, multivariate outliers can be identified. The Mahalanobis distance is based on the covariance matrix of X this matrix plays a central role in multivariate data analysis and should be estimated by appropriate methods—mostly robust methods are adequate. [Pg.71]

Sammon s NLM is one form of multidimensional scaling (MDS). There exist a number of other MDS methods with the common aim of mapping the similarities or dissimilarities of the data. The different methods use different distance measures and loss functions (see Cox and Cox 2001). [Pg.102]

Hierarchical cluster analysis (Section 6.4)—with the result represented by a dendrogram—is a complementary, nonlinear, and widely used method for cluster analysis. The distance measure used was dTANi (Equation 6.5), and the cluster mode was average linkage. The dendrogram in Figure 6.6 (without the chemical structures) was obtained from the descriptor matrix X by... [Pg.273]

Although model-based clustering seems to be restrictive to elliptical cluster forms resulting from models of multivariate normal distributions, this method has several advantages. Model-based clustering does not require the choice of a distance measure, nor the choice of a cluster validity measure because the BIC measure can be... [Pg.283]

Cluster analysis is simply a method to group entities, for which a number of properties or parameters exist, by similarity [292, 308-313]. Various distance measurements are used, and the analysis is performed in a sequential manner, reducing the number of clusters at each step. Such a procedure has been described for use in drug design and environmental engineering research as a way to group substituents that have the most similarity when various combinations of the electronic, steric, and statistically derived parameters are considered. [Pg.268]

The KNN method [77] is probably the simplest classification method to understand. Once the model space and distance measure are defined, its classification rule involves rather simple logic ... [Pg.393]

HCA is a common tool that is used to determine the natural grouping of objects, based on their multivariate responses [75]. In PAT, this method can be used to determine natural groupings of samples or variables in a data set. Like the classification methods discussed above, HCA requires the specification of a space and a distance measure. However, unlike those methods, HCA does not involve the development of a classification rule, but rather a linkage rule, as discussed below. For a given problem, the selection of the space (e.g., original x variable space, PC score space) and distance measure (e.g.. Euclidean, Mahalanobis) depends on the specific information that the user wants to extract. For example, for a spectral data set, one can choose PC score space with Mahalanobis distance measure to better reflect separation that originates from both strong and weak spectral effects. [Pg.405]

Selected entries from Methods in Enzymology [vol, page(s)] Analysis of GTP-binding/GTPase cycle of G protein, 237, 411-412 applications, 240, 216-217, 247 246, 301-302 [diffusion rates, 246, 303 distance of closest approach, 246, 303 DNA (Holliday junctions, 246, 325-326 hybridization, 246, 324 structure, 246, 322-324) dye development, 246, 303, 328 reaction kinetics, 246, 18, 302-303, 322] computer programs for testing, 240, 243-247 conformational distribution determination, 240, 247-253 decay evaluation [donor fluorescence decay, 240, 230-234, 249-250, 252 exponential approximation of exact theoretical decay, 240, 222-229 linked systems, 240, 234-237, 249-253 randomly distributed fluorophores, 240, 237-243] diffusion coefficient determination, 240, 248, 250-251 diffusion-enhanced FRET, 246, 326-328 distance measurement [accuracy, 246, 330 effect of dye orientation, 246, 305, 312-313 limitations, 246,... [Pg.290]

One of the simplest methods is the comparison of the initial structure of the macromolecule to that throughout the trajectory via a distance measure such as the root mean square deviation (RMSD). This method is most informative for a system like a folded protein under native conditions, where the molecule is expected to spend the vast majority of the time in conformations quite similar to the crystal structure. If one computes the RMSD time series against the crystal structure, one expects to see a rapid rise due to thermal fluctuations, followed by a long plateau or fluctuations about a mean at longer timescales. If the RMSD... [Pg.37]

Velocity Profile Effects Many variables can influence the accuracy of specific flow measurement methods. For example, the velocity profile in a closed conduit affects many types of flow-measuring devices. The velocity of a fluid varies from zero at the wall and at other stationary solid objects in the flow channel to a maximum at a distance from the wall. In the entry region of a conduit, the velocity field may approach plug flow and a constant velocity across the conduit, dropping to zero only at the wall. As a newtonian fluid progresses down a... [Pg.11]

To classify a new sample, fc-NN computes its distances (usually, the multivariate Euclidean distances, see Eq. 7) from each of the samples of a training set, whose class membership is known. The k nearest samples are then taken into consideration to perform the classification generally, a majority vote is employed, meaning that the new object is classified into the class mostly represented within the k selected objects. Being a distance-based method, it is sensitive to the measurement units and to the scaling procedures applied. [Pg.85]

Applications to Biological Samples. - Methods of distance measurements were compared for four doubly spin-labelled derivatives of human carbonic anhydrase.53 The distances between the spin labels were obtained from continuous wave spectra by analysis of the relative intensity of the half-field transition, Fourier deconvolution of the line-shape broadening, and computer simulation of line-shape changes. For variants with interspin distances greater than 18 A, the DEER method also was used. For each variant, at least two methods were applicable and reasonable agreement between distances obtained by different methods was obtained. The useful distance ranges for the techniques employed at X-band with natural isotope abundance spin labels were estimated to be half-field transition (5-10 A), line-shape simulation (up to 15 A), Fourier deconvolution (8 - 20 A), and four-pulse DEER (> 18 A).53... [Pg.324]


See other pages where Distance measures methods is mentioned: [Pg.254]    [Pg.212]    [Pg.288]    [Pg.254]    [Pg.212]    [Pg.288]    [Pg.46]    [Pg.517]    [Pg.324]    [Pg.254]    [Pg.322]    [Pg.97]    [Pg.97]    [Pg.275]    [Pg.277]    [Pg.278]    [Pg.289]    [Pg.34]    [Pg.351]    [Pg.174]    [Pg.69]    [Pg.119]    [Pg.306]    [Pg.710]    [Pg.696]    [Pg.666]    [Pg.273]    [Pg.319]    [Pg.1159]    [Pg.561]   
See also in sourсe #XX -- [ Pg.201 ]

See also in sourсe #XX -- [ Pg.201 ]




SEARCH



Distance measure

Distance measurements

© 2024 chempedia.info