Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dissociation secondary

The [ArS02] ions, produced by dissociative secondary electron capture from sulfonamides 103c and 103d, dissociated both by simple cleavage (equation 35a-d) and by rearrangement (equation 35e) processes, as shown by their CAD MIKE spectra83. [Pg.109]

Because the starting material (propane) and one of the products (H ) are the same m both processes the difference m bond dissociation energies is equal to the energy dif ference between an n propyl radical (primary) and an isopropyl radical (secondary) As depicted m Figure 4 20 the secondary radical is 13 kJ/mol (3 kcal/mol) more stable than the primary radical... [Pg.170]

With secondary and tertiary alcohols Ihis slage is an 8 1 reaclion m which Ihe alkyl oxonium ion dissociates to a carbocalion and water... [Pg.354]

The dissociation energies for the highlighted (by pointing allows) carbon—chlotide bonds are significantiy lower than that of a normal secondary C—Cl... [Pg.544]

Secondary bonds are considerably weaker than the primary covalent bonds. When a linear or branched polymer is heated, the dissociation energies of the secondary bonds are exceeded long before the primary covalent bonds are broken, freeing up the individual chains to flow under stress. When the material is cooled, the secondary bonds reform. Thus, linear and branched polymers are generally thermoplastic. On the other hand, cross-links contain primary covalent bonds like those that bond the atoms in the main chains. When a cross-linked polymer is heated sufficiently, these primary covalent bonds fail randomly, and the material degrades. Therefore, cross-linked polymers are thermosets. There are a few exceptions such as cellulose and polyacrylonitrile. Though linear, these polymers are not thermoplastic because the extensive secondary bonds make up for in quantity what they lack in quahty. [Pg.432]

Dissociation extraction is the process of using chemical reac tion to force a solute to transfer from one liquid phase to another. One example is the use of a sodium hydroxide solution to extract phenolics, acids, or mercaptans from a hydrocarbon stream. The opposite transfer can be forced by adding an acid to a sodium phenate stream to spring the phenolic back to a free phenol that can be extrac ted into an organic solvent. Similarly, primary, secondary, and tertiary amines can be protonated with a strong acid to transfer the amine into a water solution, for example, as an amine hydrochloride salt. Conversely, a strong base can be added to convert the amine salt back to free base, which can be extracted into a solvent. This procedure is quite common in pharmaceutical production. [Pg.1450]

The transition state is closer in energy to the car bocation and more closely resembles it than the alkyloxonium ion. Thus, structural features that stabilize car bocations stabilize transition states leading to them. It follows, therefore, that alkyloxonium ions derived from tertiary alcohols have a lower energy of activation for dissociation and are converted to their- corresponding carbocations faster than those derived from secondary and primar y alcohols. Simply put more stable carbocations are formed faster than less stable ones. Figure 4.17 expresses this principle via a potential energy diagran. [Pg.163]

FIGURE 4.20 The bond dissociation energies of methylene and methyl C—H bonds in propane reveal difference in stabilities between two isomeric free radicals. The secondary radical is more stable than the primary. [Pg.171]

A mechanism for the fonnation of these three alkenes is shown in Figure 5.9. Dissociation of the primary alkyloxonium ion is accompanied by a shift of hydride from C-2 to C-1. This avoids the fonnation of a primary carbocation, leading instead to a secondary carbocation in which the positive charge is at C-2. Deprotonation of this carbocation yields the observed products. (Some 1-butene may also arise directly from the primary alkyloxonium ion.)... [Pg.211]

With secondary and tertiary alcohols, this stage is an SnI reaction in which the alkyloxonium ion dissociates to a carbocation and water. [Pg.354]

The determination of the degree of dissociation of cotarnine ° and the good agreement with the values derived from measurements of electrical conductivity with those from the spectrophotometric methods is indirect evidence that no significant part of the undissociated cotarnine is in the amino-aldehyde form. In the conductance calculation, the undissociated part was neglected. If this included a significant amount of amino-aldehyde (i.e., a secondary base), there would be a noticeable discrepancy in the degree of dissociation obtained by the two methods. [Pg.177]

The relation between free phosphoric acid content and total phosphate content in a processing bath, whether based on iron, manganese or zinc, is very important this relation is generally referred to as the acid ratio. An excess of free acid will retard the dissociation of the primary and secondary phosphates and hinder the deposition of the tertiary phosphate coating sometimes excessive loss of metal takes place and the coating is loose and powdery. When the free acid content is too low, dissociation of phosphates (equations 15.2, 15.3 and 15.4) takes place in the solution as well as at the metal/solution interface and leads to precipitation of insoluble phosphates as sludge. The free acid content is usually determined by titrating with sodium... [Pg.707]

One way of determining carbocation stabilities is to measure the amount of energy required to form the carbocation by dissociation of the corresponding alkyl halide, R-X - R+ + X . As shown in Figure 6.10, tertiary alkyl halides dissociate to give carbocations more easily than secondary or primary ones. As a result, trisubstituted carbocations are more stable than disubstituted ones, which are more stable than monosubstituted ones. The data in Figure 6.10 are taken from measurements made in the gas phase, but a similar stability order is found for carbocations in solution. The dissociation enthalpies are much lower in solution because polar solvents can stabilize the ions, but the order of carbocation stability remains the same. [Pg.195]

What are the reasons for the observed reactivity order of alkane hydrogens toward radical chlorination A look at the bond dissociation energies given previously in Table 5.3 on page 156 hints at the answer. The data in Table 5.3 indicate that a tertiary C—H bond (390 kj/mol 93 kcal/mol) is weaker than a secondary C-H bond (401 kj/mol 96 kcal/mol), which is in turn weaker than a primary C H bond (420 kj/mol 100 kcal/mol). Since less energy is needed to break a tertiary C-H bond than to break a primary or secondary C-H bond, the resultant tertiary radical is more stable than a primary or secondary radical. [Pg.337]

When a polyprotic acid is dissolved in water, the various hydrogen atoms undergo ionisation to different extents. For a diprotic acid H2A, the primary and secondary dissociations can be represented by the equations ... [Pg.33]

A saturated aqueous solution of hydrogen sulphide at 25 °C, at atmospheric pressure, is approximately 0.1 M, and for H2S the primary and secondary dissociation constants may be taken as 1.0 x 10-7molL-1 and 1 x 10 14molL 1... [Pg.34]

The very small value of K2 indicates that the secondary dissociation and therefore [S2-] are extremely minute, and ignoring [S2-] in equation (g) we are left with the result... [Pg.34]

APPENDIX 4 SATURATED SOLUTIONS OF SOME REAGENTS AT 20°C 829 APPENDIX 5 SOURCES OF ANALYSED SAMPLES 830 APPENDIX 6 BUFFER SOLUTIONS AND SECONDARY pH STANDARDS 830 APPENDIX 7a DISSOCIATION CONSTANTS OF SOME ACIDS IN WATER AT 25°C 832 APPENDIX 7b ACIDIC DISSOCIATION CONSTANTS OF SOME BASES IN WATER AT 25°C 833... [Pg.899]

Substrate and product inhibitions analyses involved considerations of competitive, uncompetitive, non-competitive and mixed inhibition models. The kinetic studies of the enantiomeric hydrolysis reaction in the membrane reactor included inhibition effects by substrate (ibuprofen ester) and product (2-ethoxyethanol) while varying substrate concentration (5-50 mmol-I ). The initial reaction rate obtained from experimental data was used in the primary (Hanes-Woolf plot) and secondary plots (1/Vmax versus inhibitor concentration), which gave estimates of substrate inhibition (K[s) and product inhibition constants (A jp). The inhibitor constant (K[s or K[v) is a measure of enzyme-inhibitor affinity. It is the dissociation constant of the enzyme-inhibitor complex. [Pg.131]


See other pages where Dissociation secondary is mentioned: [Pg.13]    [Pg.250]    [Pg.124]    [Pg.316]    [Pg.13]    [Pg.250]    [Pg.124]    [Pg.316]    [Pg.2798]    [Pg.2802]    [Pg.163]    [Pg.1207]    [Pg.363]    [Pg.220]    [Pg.423]    [Pg.220]    [Pg.5]    [Pg.341]    [Pg.529]    [Pg.69]    [Pg.96]    [Pg.525]    [Pg.692]    [Pg.699]    [Pg.456]    [Pg.203]    [Pg.1207]    [Pg.318]    [Pg.286]    [Pg.80]    [Pg.446]    [Pg.33]    [Pg.276]    [Pg.276]   
See also in sourсe #XX -- [ Pg.80 ]




SEARCH



© 2024 chempedia.info