Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dissociation rate unimolecular

A covalent bond (or particular nomial mode) in the van der Waals molecule (e.g. the I2 bond in l2-He) can be selectively excited, and what is usually observed experimentally is that the unimolecular dissociation rate constant is orders of magnitude smaller than the RRKM prediction. This is thought to result from weak coupling between the excited high-frequency intramolecular mode and the low-frequency van der Waals intemiolecular modes [83]. This coupling may be highly mode specific. Exciting the two different HE stretch modes in the (HF)2 dimer with one quantum results in lifetimes which differ by a factor of 24 [84]. Other van der Waals molecules studied include (NO)2 [85], NO-HF [ ], and (C2i J )2 [87]. [Pg.1030]

Figure A3.12.9. Comparison of the unimolecular dissociation rates for HO2—>H+02 as obtained from the quantum mechanical resonances open circles) and from variational transition state RRKM step... Figure A3.12.9. Comparison of the unimolecular dissociation rates for HO2—>H+02 as obtained from the quantum mechanical resonances open circles) and from variational transition state RRKM step...
Dobbyn A J, Stumpf M, Keller H-M and Schinke R 1996 Theoretical study of the unimolecular dissociation HO2—>H+02. II. Calculation of resonant states, dissociation rates, and O2 product state distributions J. Chem. Phys. 104 8357-81... [Pg.1043]

Now ku < 0.8 X 109 sec.-1, only slightly smaller than the upper limit 9 < 1.1 X 109 sec.-1 Apparently the unimolecular dissociation rate constants of all secondary complexes are less than ca. 5 X 107 sec.-1, those of the tertiary complexes less than 109 sec.-1, and those of the quaternary complexes probably of the order of 1010 sec.-1 These conclusions substantiate the view 16) that the mass spectrometrically observed tertiary ions arise predominantly from dissociation of the intermediate addition complexes C6Hi2+, C6Hn+, and C6Hi0+. Higher order ions, however, should arise principally from reactions of the dissociation products of the above complexes 62). [Pg.264]

In the present review, a new variation on an existing experimental method will be used to show how accurate unimolecular dissociation rate constants can be derived for thermal systems. For example, thermal bimolecular reactions are amenable to study by use of several, now well-known, techniques such as (Fourier transform) ion cyclotron resonance spectrometry (FTICR), flowing afterglow (FA), and high-pressure mass spectrometry (HPMS). In systems where a bimolecular reaction leads to products other than a simple association adduct, the bimolecular reaction can always be thought of as containing a unimolecular... [Pg.43]

Figure 7. Variation of unimolecular dissociation rate constant vs. reciprocal temperature for the proton-bound methoxide ion, ((CH30)2H]. Arrhenius parameters derived... Figure 7. Variation of unimolecular dissociation rate constant vs. reciprocal temperature for the proton-bound methoxide ion, ((CH30)2H]. Arrhenius parameters derived...
Hase s trajectory value for the association rate constant, /cp of 1.04 cm- s maybe used in conjunction with the above Langevin value of the collisional stabilization rate constant to yield a unimolecular dissociation rate constant of 3.75 x 10 ° s and a lifetime of 27 ps. In each case, these values are in excellent agreement with the order of magnitude of lifetimes predicted by Hase s calculations for cr/CHjCl collisions at relative translational energies of 1 kcal mor , rotational temperatures of 300 K, and vibrational energies equal to the zero-point energy of the system. [Pg.59]

In order to assess the validity of such an approach, within the assumptions of the model outlined, we have recently undertaken an examination of deuterium isotope effects on both the radiative and unimolecular dissociation rates. One such case is that of the protonated dimer of acetone in which either the methyl groups, the protonated oxygen, or both, are deuterium substituted. Results for these four systems are shown in Figure 14 and the rate data derived are summarized in Table 1. [Pg.61]

Figure 19. Dependence of the unimolecular dissociation rate constant for H2O loss from the cluster ion, (H20)4H% on pressure of CH4 in the FTICR cell. Figure 19. Dependence of the unimolecular dissociation rate constant for H2O loss from the cluster ion, (H20)4H% on pressure of CH4 in the FTICR cell.
Again the radiative association kinetics described above allow a direct comparison for some realistic values of k and k. For most chemically activated systems at the threshold for unimolecular dissociation, the observed radiative rate constants are of the order of 10-100 s and hence are much below the values expected for k of about 10 s . Therefore, the first limit is most likely to be valid, with the interesting conclusion that the observed unimolecular dissociation rate constant will depend only on the photon density and the absorption cross section (rate constant) at a given wavelength. [Pg.76]

At the higher pressures of other ion-molecule techniques, such as flowing afterglow or pulsed high-pressure mass spectrometry," both of which operate with a bath gas pressure of about 1 torr, collisions of such an excited intermediate with the bath gas occur on a nanosecond to microsecond time-scale, in competition with the unimolecular dissociation rate. For these techniques, ions that are the... [Pg.205]

B. Unimolecular Dissociation Rates RRKM Theory and Distribution of Resonances... [Pg.492]

The fragmentation of a molecule in its ground electronic state is commonly known as unimolecular dissociation [26-28]. [For a recent review see Ref. 29 and the Faraday Discussion of the Chemical Society, vol. 102 (1995).] Because of its importance in several areas of physical chemistry, such as combustion or atmospheric kinetics, there is a high demand of accurate unimolecular dissociation rates. On the other hand, however, the calculation of reliable dissociation rates by dynamical methods (i.e., the solution of the classical or quantum mechanical equations of motion) is, for obvious technical problems, prohibited for all but a few simple molecules. For... [Pg.750]

Figure 9 shows the temperature dependence of the recovered kinetic rate coefficients for the formation (k bimolecular) and dissociation (k unimolecular) of pyrene excimers in supercritical CO2 at a reduced density of 1.17. Also, shown is the bimolecular rate coefficient expected based on a simple diffusion-controlled argument (11). The value for the theoretical rate constant was obtained through use of the Smoluchowski equation (26). As previously mentioned, the viscosities utilized in the equation were calculated using the Lucas and Reichenberg formulations (16). From these experiments we obtain two key results. First, the reverse rate, k, is very temperature sensitive and increases with temperature. Second, the forward rate, kDM, 1S diffusion controlled. Further discussion will be deferred until further experiments are performed nearer the critical point where we will investigate the rate parameters as a function of density. [Pg.84]

In this chapter we elucidate the state-specific perspective of unimolec-ular decomposition of real polyatomic molecules. We will emphasize the quantum mechanical approach and the interpretation of the results of state-of-the-art experiments and calculations in terms of the quantum dynamics of the dissociating molecule. The basis of our discussion is the resonance formulation of unimolecular decay (Sect. 2). Summaries of experimental and numerical methods appropriate for investigating resonances and their decay are the subjects of Sects. 3 and 4, respectively. Sections 5 and 6 are the main parts of the chapter here, the dissociation rates for several prototype systems are contrasted. In Sect. 5 we shall discuss the mode-specific dissociation of HCO and HOCl, while Sect. 6 concentrates on statistical state-specific dissociation represented by D2CO and NO2. Vibrational and rotational product state distributions and the information they carry about the fragmentation step will be discussed in Sect. 7. Our description would be incomplete without alluding to the dissociation dynamics of larger molecules. For them, the only available dynamical method is the use of classical trajectories (Sect. 8). The conclusions and outlook are summarized in Sect. 9. [Pg.112]

If the lifetime of the excited resonance state is too long for direct measurement of the rate via the widths of the spectral features, one can use a third laser (the probe laser in Fig. 11) to resonantly promote the molecules from this level to a rovibrational level in the excited electronic state. The decrease of the total LIF signal as function of the delay time between pump and probe laser reflects the state-specific dissociation rate. The limitation of the SEP technique is that an excited state has to be found, which lives long enough and which is accessible by all three lasers. Molecules, which have been studied by SEP spectroscopy in the context of unimolecular dissociation, are HCO, DCO, HFCO and CH3O. [Pg.131]

The unimolecular dissociation rates are determined from the fit of the Stark spectra to the expression [267]... [Pg.175]


See other pages where Dissociation rate unimolecular is mentioned: [Pg.262]    [Pg.342]    [Pg.340]    [Pg.491]    [Pg.83]    [Pg.206]    [Pg.66]    [Pg.87]    [Pg.42]    [Pg.50]    [Pg.58]    [Pg.60]    [Pg.62]    [Pg.72]    [Pg.77]    [Pg.116]    [Pg.27]    [Pg.759]    [Pg.776]    [Pg.10]    [Pg.12]    [Pg.217]    [Pg.109]    [Pg.152]    [Pg.163]    [Pg.173]    [Pg.187]   
See also in sourсe #XX -- [ Pg.539 , Pg.540 ]




SEARCH



Dissociation unimolecular reaction rates

Dissociations unimolecular

RRKM theory unimolecular dissociation rates

Rate constant for unimolecular dissociation

Resonance unimolecular dissociation rates

Unimolecular dissociation energy-averaged rate

© 2024 chempedia.info