Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dissociation rate constants complexes

Phenomenological evidence for the participation of ionic precursors in radiolytic product formation and the applicability of mass spectral information on fragmentation patterns and ion-molecule reactions to radiolysis conditions are reviewed. Specific application of the methods in the ethylene system indicates the formation of the primary ions, C2H4+, C2i/3+, and C2H2+, with yields of ca. 1.5, 1.0, and 0.8 ions/100 e.v., respectively. The primary ions form intermediate collision complexes with ethylene. Intermediates [C4iZ8 + ] and [CJH7 + ] are stable (<dissociation rate constants <107 sec.-1) and form C6 intermediates which dissociate rate constants <109 sec. l). The transmission coefficient for the third-order ion-molecule reactions appears to be less than 0.02, and such inefficient steps are held responsible for the absence of ionic polymerization. [Pg.249]

Now ku < 0.8 X 109 sec.-1, only slightly smaller than the upper limit 9 < 1.1 X 109 sec.-1 Apparently the unimolecular dissociation rate constants of all secondary complexes are less than ca. 5 X 107 sec.-1, those of the tertiary complexes less than 109 sec.-1, and those of the quaternary complexes probably of the order of 1010 sec.-1 These conclusions substantiate the view 16) that the mass spectrometrically observed tertiary ions arise predominantly from dissociation of the intermediate addition complexes C6Hi2+, C6Hn+, and C6Hi0+. Higher order ions, however, should arise principally from reactions of the dissociation products of the above complexes 62). [Pg.264]

All enzymatic reactions are initiated by formation of a binary encounter complex between the enzyme and its substrate molecule (or one of its substrate molecules in the case of multiple substrate reactions see Section 2.6 below). Formation of this encounter complex is almost always driven by noncovalent interactions between the enzyme active site and the substrate. Hence the reaction represents a reversible equilibrium that can be described by a pseudo-first-order association rate constant (kon) and a first-order dissociation rate constant (kM) (see Appendix 1 for a refresher on biochemical reaction kinetics) ... [Pg.21]

The very slow dissociation rates for tight binding inhibitors offer some potential clinical advantages for such compounds, as described in detail in Chapter 6. Experimental determination of the value of k, can be quite challenging for these inhibitors. We have detailed in Chapters 5 and 6 several kinetic methods for estimating the value of the dissociation rate constant. When the value of kofS is extremely low, however, alternative methods may be required to estimate this kinetic constant. For example, equilibrium dialysis over the course of hours, or even days, may be required to achieve sufficient inhibitor release from the El complex for measurement. A significant issue with approaches like this is that the enzyme may not remain stable over the extended time course of such experiments. In some cases of extremely slow inhibitor dissociation, the limits of enzyme stability will preclude accurate determination of koff the best that one can do in these cases is to provide an upper limit on the value of this rate constant. [Pg.194]

In the preceding chapter, thermodynamic aspects of macrocycle complexation were treated in some detail. In this chapter, kinetic aspects are discussed. Of course, kinetic and thermodynamic factors are interrelated. Thus, in terms of a simple complexation reaction of the type given below (charges not shown), the stability constant (/CML) may be expressed directly as the ratio of the second-order formation constant (kf) to the first-order dissociation rate constant (kd) ... [Pg.192]

Shuman and Michael [10] applied a rotating disk electrode to the measurement of copper complex dissociation rate constants in marine coastal waters. An operational definition for labile and non-labile metal complexes was established on kinetic criteria. Samples collected off the mid-Atlantic coast of USA showed varying degrees of copper chelation. It is suggested that the technique should be useful for metal toxicity studies because of its ability to measure both equilibrium concentrations and kinetic availability of soluble metal. [Pg.333]

The equilibrium constant of hexaphenylethane dissociation, in striking contrast to the rate constant for dissociation, varies considerably with solvent. The radical with its unpaired electron and nearly planar structure probably complexes with solvents to a considerable extent while the ethane does not. Since the transition state is like the ethane and its solvation is hindered, the dissociation rate constants change very little with solvent.12 13 From an empirical relationship that happens to exist in this case between the rate and equilibrium constants in a series of solvents, it has been calculated that the transition state resembles the ethane at least four times as much as it resembles the radical. These are the proportions that must be used if the free energy of the transition state in a given solvent is to be expressed as a linear combination of the free energies of the ethane and radical states.14... [Pg.7]

The dynamics of a supramolecular system are defined by the association and dissociation rate constants of the various components of the system. The time-scale for the dynamic events is influenced by the size (length-scale) and by the complexity of the system. The fastest time for an event to occur in solution is limited by the diffusion of the various components to form encounter complexes. This diffusion limit provides an estimate for the shortest time scale required for kinetic measurements. The diffusion of a small molecule in water over a distance of 1 nm, which is the length-scale for the size of small host systems such as CDs or calixarenes, is 3 ns at room temperature. In general terms, one can define that mobility within host systems can occur on time scales shorter than nanoseconds, while the association/dissociation processes are expected to occur in nanoseconds or on longer time scales. The complexity of a system also influences its dynamics, since various kinetic events can occur over different time scales. An increase in complexity can be related to an increase in the number of building blocks within the system, or complexity can be related to the presence of more than one binding site. [Pg.169]

In a typical SPR experiment real-time kinetic study, solution flows over the surface, so desorption of the guest immobilized on the surface due to this flow must be avoided.72 In the first stage of a typical experiment the mobile reactant is introduced at a constant concentration ([H]0) into the buffer flowing above the surface-bound reactant. This favors complex association, and the progress of complex formation at the surface is monitored. The initial phase is then followed by a dissociation phase where the reactant is removed from the solution flowing above the surface, and only buffer is passed over the surface to favor dissociation of the complex.72 74 The obtained binding curves (sensograms) contain information on the equilibrium constant of the interaction and the association and dissociation rate constants for complex formation (Fig. 9). [Pg.184]

Table 1 Association (k+) and dissociation rate constants (k ) for the binding of ethidium bromide to DNA assuming a 1 1 complexation stoichiometry... Table 1 Association (k+) and dissociation rate constants (k ) for the binding of ethidium bromide to DNA assuming a 1 1 complexation stoichiometry...
In the case where the arylsulfonate group is a benzene instead of a naphthalene the relaxation kinetics for guest complexation with a-CD measured by stopped-flow showed either one or two relaxation processes.185,190 When one relaxation process was observed the dependence of the observed rate constant on the concentration of CD was linear and the values for the association and dissociation rate constants were determined using Equation (3). When two relaxation processes were observed the observed rate constant for the fast process showed a linear dependence on the... [Pg.205]

CDs can form complexes with stoichiometries different from 1 1. Stopped-flow experiments were employed to study the binding dynamics of a 2 2 complex between pyrene and y-CD.196 Both, 1 1 and 2 2 complexes are formed and the 2 2 complex exhibits excimer-like emission. The association rate constant for the 2 2 complex was found to be 6 x 107M-1 s-1, while the dissociation rate constant was 73 s-1. These values correspond to a decrease of up to 5 orders of magnitude when compared to the dynamics for the 1 1 complex. [Pg.208]

Compounds 30-32 formed 2 1 complexes with CDs (Scheme 13). The formation of the 1 1 complex was fast and for this reason only one relaxation process was observed. In the cases where the 2 2 complex was present its formation was also fast and only one relaxation process for the 2 1 complex was observed in the temperature jump experiments. Since the equilibria are coupled the expression for the observed rate constant includes Kt, (and K22 when the 2 2 complex is present), k21, k2, and the concentrations of guest, 1 1 complex and CD.180 182 The values for the association and dissociation rate constants and equilibrium constants were obtained from the non-linear fit of the dependence of kobs on the total concentration of CD (Table 9). [Pg.209]

Table 9 Equilibrium constants and association and dissociation rate constants for guests that form complexes with CDs with multiple stoichiometries... Table 9 Equilibrium constants and association and dissociation rate constants for guests that form complexes with CDs with multiple stoichiometries...
This technique was employed to study the binding dynamics of Pyronine Y (31) and B (32) with /)-CD/ s The theoretical background for this particular system has been discussed with the description of the technique above. Separate analysis of the individual correlation curves obtained was difficult since the diffusion time for the complex could not be determined directly because, even at the highest concentration of CD employed, about 20% of the guest molecules were still free in solution. The curves were therefore analyzed using global analysis to obtain the dissociation rate constant for the 1 1 complex (Table 12). The association rate constant was then calculated from the definition of the equilibrium constant. [Pg.213]

The association rate constants were the same within experimental error. The dissociation rate constant for 31 was however an order of magnitude larger than that for 32. The association rate constants determined with fluorescence correlation spectroscopy were similar to the rate constants determined using temperature jump experiments (see above). However, a significant difference was observed for the dissociation rate constants where, for the 1 1 complex, values of 2.6 x 104 and 1.5 x 104s 1 were determined in the temperature jump experiments for 31 and 32, respectively.181,182 The reasons for this difference were not discussed by the authors of the study with fluorescence correlation spectroscopy. One possibility is that the technique is not sensitive enough to detect the presence of higher-order complexes, such as the 1 2 (31 CD) complex observed in the temperature jump experiments. One other possibility is the fact that the temperature jump experiments were performed in the presence of 1.0 M NaCl. [Pg.213]

Table 12 Association and dissociation rate constants for pyronine/CD complex at 21 °C65... Table 12 Association and dissociation rate constants for pyronine/CD complex at 21 °C65...
At higher NO concentrations, MPO activity is inhibited through formation of an inactive ferric nitrosyl complex MPO(NO) the rate constant kori is 1.07xlO6 M-1s-1 and the dissociation rate constant, kQff, is 10.8 s-1 (pH 7.0 phosphate buffer at 10 °C) (Scheme 9, pathway A). However, the inhibitory effects of NO are reduced in the presence of plasma levels of Cl- (100 mM) where on and kQ rate constants were determined to be 1.5 x 105 M-1s-1 and 22.8 s-1, respectively. The modulating effects of NO on MPO activity parallel that of O2 which accelerates activity by serving as a substrate for compound II and inhibits activity by acting as a ligand for MPO (Scheme 9, pathway B) (29). [Pg.242]

Under these conditions, the formation rate constant, k, can be estimated from the product of the outer sphere stability constant, Kos, and the water loss rate constant, h2o, (equation (28) Table 2). The outer sphere stability constant can be estimated from the free energy of electrostatic interaction between M(H20)q+ and L and the ionic strength of the medium [5,164,172,173]. Consequently, Kos does not depend on the chemical nature of the ligand. A similar mechanism will also apply to a coordination complex with polydentate ligands, if the rate-limiting step is the formation of the first metal-ligand bond [5]. Values for the dissociation rate constants, k, are usually estimated from the thermodynamic equilibrium constant, using calculated values of kf ... [Pg.470]

For complexation/dissociation reactions, ji corresponds with the average distance that M can travel following dissociation of ML (and prior to reassociation) [40,46]. Complexes are dynamic when M frequently changes from its free to complexed state during its diffusion time to the membrane surface or, in other words, if the first-order dissociation rate constant, k(, and the pseudo first-order formation rate constant, kf[L], are much larger than their effective diffusion rate constants (D/<52) [325,326]. Thus, for conditions of planar diffusion, complexes are labile if ... [Pg.503]

Whatever the nature of this interaction may be, we find that, if we interpret the observed dissociation rate constant to arise from the contribution of two complex species, one having... [Pg.40]


See other pages where Dissociation rate constants complexes is mentioned: [Pg.18]    [Pg.145]    [Pg.169]    [Pg.286]    [Pg.91]    [Pg.168]    [Pg.188]    [Pg.201]    [Pg.202]    [Pg.202]    [Pg.203]    [Pg.210]    [Pg.211]    [Pg.212]    [Pg.78]    [Pg.87]    [Pg.136]    [Pg.243]    [Pg.464]    [Pg.472]    [Pg.472]    [Pg.474]    [Pg.476]    [Pg.311]    [Pg.12]    [Pg.40]    [Pg.41]    [Pg.68]    [Pg.448]   
See also in sourсe #XX -- [ Pg.68 ]

See also in sourсe #XX -- [ Pg.68 ]




SEARCH



Complexation rate constants

Complexation rates

Complexation reactions dissociation, rate constants, estimation

Complexes constants

Complexes dissociation constant

Complexes, dissociation

Complexing constants

Complexity constant

Dissociation rate constant

Rate constants complexes

© 2024 chempedia.info