Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dispersions, nonaqueous, particle

Ceramic particles can be well dispersed in nonaqueous solvent via eleetrosta-tic repulsive forces. In the presence of organic dispersants, the electrostatic repulsive forces can be augmented by steric hindrance from the adsorbed dispersant molecules. The combined hindrances to attraction and coagulation can be very effective in dispersing fine particles and increasing solids loading. [Pg.211]

Nonaqueous Dispersion Polymerization. Nonaqueous dispersion polymers are prepared by polymerizing a methacryhc monomer dissolved in an organic solvent to form an insoluble polymer in the presence of an amphipathic graft or block copolymer. This graft or block copolymer, commonly called a stabilizer, lends coUoidal stabiUty to the insoluble polymer. Particle sizes in the range of 0.1—1.0 pm were typical in earlier studies (70), however particles up to 15 pm have been reported (71). [Pg.268]

Phenolic Dispersions. These systems are predominantly resin-in-water systems in which the resin exists as discrete particles. Particle size ranges from 0.1 to 2 p.m for stable dispersions and up to 100 p.m for dispersions requiring constant agitation. Some of the earliest nonaqueous dispersions were developed for coatings appHcations. These systems consist of an oil-modified phenoHc resin complexed with a metal oxide and a weak solvent. [Pg.298]

Chemical Grafting. Polymer chains which are soluble in the suspending Hquid may be grafted to the particle surface to provide steric stabilization. The most common technique is the reaction of an organic silyl chloride or an organic titanate with surface hydroxyl groups in a nonaqueous solvent. For typical interparticle potentials and a particle diameter of 10 p.m, steric stabilization can be provided by a soluble polymer layer having a thickness of - 10 nm. This can be provided by a polymer tail with a molar mass of 10 kg/mol (25) (see Dispersants). [Pg.547]

Other examples of concentrated laundry liquids have been described in the literature [53]. These might be called nonaqueous or low-water formulations. They may contain nonionic and anionic surfactants, inorganic builders, enzyme and bleach additives, and an organic solvent such as a low mole AE [54]. Surfactant levels may range from 30% up to 80%. In some cases, the builder salts are dispersed as solid particles in the non-aqueous phase [55]. [Pg.139]

Polymerizations conducted in nonaqueous media in which the polymer is insoluble also display the characteristics of emulsion polymerization. When either vinyl acetate or methyl methacrylate is polymerized in a poor solvent for the polymer, for example, the rate accelerates as the polymerization progresses. This acceleration, which has been called the gel effect,probably is associated with the precipitation of minute droplets of polymer highly swollen with monomer. These droplets may provide polymerization loci in which a single chain radical may be isolated from all others. A similar heterophase polymerization is observed even in the polymerization of the pure monomer in those cases in which the polymer is insoluble in its own monomer. Vinyl chloride, vinylidene chloride, acrylonitrile, and methacryloni-trile polymerize with precipitation of the polymer in a finely divided dispersion as rapidly as it is formed. The reaction rate increases as these polymer particles are generated. In the case of vinyl chloride ... [Pg.216]

Other techniques to promote complete polymer hydration include vigorous mixing and slow addition of the polysaccharide. Specially designed mixing devices have been used to promote rapid particle dispersion ( 1). Adding already prepared dispersions of guar, HPG, and HEC in nonaqueous media is another means of promoting rapid... [Pg.18]

Much work on the preparation of nonaqueous polymer dispersions has involved the radical polymerization of acrylic monomers in the presence of copolymers having the A block the same as the acrylic polymer in the particle core 2). The preparation of polymer dispersions other than polystyrene in the presence of a PS-PDMS diblock copolymer is of interest because effective anchoring of the copolymer may be influenced by the degree of compatibility between the PS anchor block and the polymer molecules in the particle core. The present paper describes the interpretation of experimental studies performed with the aim of determining the mode of anchoring of PS blocks to polystyrene, poly(methyl methacrylate), and poly(vinyl acetate) (PVA) particles. [Pg.268]

Besides temperature and addition of non-solvent, pressure can also be expected to affect the solvency of the dispersion medium for the solvated steric stabilizer. A previous analysis (3) of the effect of an applied pressure indicated that the UCFT should increase as the applied pressure increases, while the LCFT should be relatively insensitive to applied pressure. The purpose of this communication is to examine the UCFT of a nonaqueous dispersion as a function of applied pressure. For dispersions of polymer particles stabilized by polyisobutylene (PIB) and dispersed in 2-methylbutane, it was observed that the UCFT moves to higher temperatures with increasing applied pressure. These results can qualitatively be rationalized by considering the effect of pressure on the free volume dissimilarity contribution to the free energy of close approach of the interacting particles. [Pg.318]

Polymerizations that are carried out in nonaqueous continuous phases instead of water are termed dispersion polymerizations regardless of whether the product consists of filterable particles or of a nonaqueous colloidal system. [Pg.30]

Morrison uses the following simple Coulombic form of repulsion and the Hamaker expression for attraction for spherical particles of radius Rs for interaction between the particles in nonaqueous dispersions ... [Pg.622]

The graft copolymers were already used for preparation and stabilization of polymer particles by Barrett [1]. He synthesized a poly(12-hydrostearic acid) macromonomer with a methacrylate end group. This macromonomer was copolymerized with MMA to obtain a preformed comb-graft copolymer, which was successfully used as stabilizer in nonaqueous dispersions of MMA. [Pg.9]

Different architectures, such as block copolymers, crosslinked microparticles, hyperbranched polymers and dendrimers, have emerged (Fig. 7.11). Crosslinked microparticles ( microgels ) can be described as polymer particles with sizes in the submicrometer range and with particular characteristics, such as permanent shape, surface area, and solubility. The use of dispersion/emulsion aqueous or nonaqueous copolymerizations of formulations containing adequate concentrations of multifunctional monomers is the most practical and controllable way of manufacturing micro-gel-based systems (Funke et al., 1998). The sizes of CMP prepared in this way vary between 50 and 300 nm. Functional groups are either distributed in the whole CMP or are grafted onto the surface (core-shell, CS particles). [Pg.234]

Recently, great strides have been made in developing electrical and optical transient methods for measuring particle charge and mobility in these nonaqueous dispersions. It has been possible to obtain particle charge/mass ratios as well as the field dependence of particle mobility. [Pg.313]


See other pages where Dispersions, nonaqueous, particle is mentioned: [Pg.253]    [Pg.349]    [Pg.453]    [Pg.242]    [Pg.105]    [Pg.176]    [Pg.312]    [Pg.322]    [Pg.336]    [Pg.458]    [Pg.463]    [Pg.24]    [Pg.149]    [Pg.503]    [Pg.318]    [Pg.318]    [Pg.155]    [Pg.41]    [Pg.609]    [Pg.721]    [Pg.532]    [Pg.624]    [Pg.313]    [Pg.315]    [Pg.317]    [Pg.319]    [Pg.321]    [Pg.322]    [Pg.323]    [Pg.325]    [Pg.191]    [Pg.197]    [Pg.198]    [Pg.503]   


SEARCH



Dispersion nonaqueous

Dispersions, nonaqueous, particle charge

Nonaqueous

Particle dispersed

Particle dispersibility

Particle dispersion

© 2024 chempedia.info