Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Discrete solvent effects

Claverie P, J P Daudey, J Lmglet, B Pullman, D Piazzola and M J Huron 1978. Studies of Solvent Effects. I. Discrete, Continuum and Discrete-Continuum Models and Their Comparison for Some Simple Cases NH, CH3OH and substituted NH4. Journal of Physical Chemistry 82 405-418. [Pg.650]

Another method that has been applied by our group to the study of enzymatic reactions is the Effective Fragment Potential (EFP) method [19]. The EFP method (developed at Mark Gordon s group at Iowa State University) allows the explicit inclusion of environment effects in quantum chemical calculations. The solvent, which may consist of discrete solvent molecules, protein fragments or other material, is treated explicitly using a model potential that incorporates electrostatics, polarization, and exchange repulsion effects. The solute, which can include some... [Pg.7]

Claverie, P. Daudey, J.P. Langlet, J. Pullman, B. Piazzola, D. Huron, M.J., Studies of solvent effects. 1. Discrete, continuum, and discrete-continuum models and their comparison for some simple cases NH4, CH3OH, and substituted NH4, J. Phys. Chem. 1978, 82, 405-418... [Pg.460]

Another aspect that has been theoretically studied109,124,129 is experimental evidence that Diels-Alder reactions are quite sensitive to solvent effects in aqueous media. Several models have been developed to account for the solvent in quantum chemical calculations. They may be divided into two large classes discrete models, where solvent molecules are explicitly considered and continuum models, where the solvent is represented by its macroscopic magnitudes. Within the first group noteworthy is the Monte Carlo study... [Pg.20]

Tortonda, F. R., Pascual-Ahuir, J. L., Silla, E. and Tunon, I. Solvent effects on the thermodynamics and kinetics of the proton transfer between hydronium ions and ammonia. A Theoretical study using the continuum and the discrete models, J. Phys. Chem., 99 (1995), 12525-12531... [Pg.357]

For the optimal application of GPC to the separation of discrete small molecules, three factors should be considered. Solvent effects are minimal, but may contribute selectivity when solvent-solute interactions occur. The resolving power in SMGPC increases as the square root of the column efficiency (plate count). New, efficient GPC columns exist which make the separation of small molecules affordable and practical, as indicated by applications to polymer, pesticide, pharmaceutical, and food samples. Finally, the slope and range of the calibration curve are indicative of the distribution of pores available within a column. Transformation of the calibration curve data for individual columns yields pore size distributions from which useful predictions can be made regarding the characteristics of column sets. [Pg.185]

The analysis of the transient fluorescence spectra of polar molecules in polar solvents that was outlined in Section I.A assumes that the specific probe molecule has certain ideal properties. The probe should not be strongly polarizable. Probe/solvent interactions involving specific effects, such as hydrogen-bonding should be avoided because specific solute/solvent effects may lead to photophysically discrete probe/solvent complexes. Discrete probe/solvent interactions are inconsistent with the continuum picture inherent in the theoretical formalism. Probes should not possess low lying, upper excited states which could interact with the first-excited state during the solvation processes. In addition, the probe should not possess more than one thermally accessible isomer of the excited state. [Pg.14]

A solvent, in addition to permitting the ionic charges to separate and the electrolyte solution to conduct an electrical current, also solvates the discrete ions, firstly by ion-dipole or ion-induced dipole interactions and secondly by more direct interactions, such as hydrogen bonding to anions or electron pair donation to cations. The latter interactions, thus, depend on the Lewis acidity and basicity, respectively, of the solvents (Table 4.3). The redox properties of the ions at an electrode therefore depend on their being solvated, and the solvent effects on electrode potentials or polarographic half wave potentials, or similar quantities in voltammetry are manifested through the different solvation abilities of the solvents. [Pg.114]

As a second example, we have determined the influence of solvation on the steric retardation of SN2 reactions of chloride with ethyl and neopentyl chlorides in water, which has recently been studied by Vayner and coworkers [91]. In their study solvent effects were examined by means of QM-MM Monte Carlo simulations as well as with the CPCM model. Solvation causes a large increase in the activation energies of these reactions, but has a very small differential effect on the ethyl and neopentyl substrates. Nevertheless, a quantitative difference was found between the stability of the transition states determined using discrete and continuum treatments of solvation, since the activation free energies for ethyl chloride and neopentyl chloride amount to 23.9 and 30.4kcalmoF1 according to MC-FEP simulations, but to 38.4 and 47.6 kcal moF1 from CPCM computations. [Pg.331]

Computational methods to study solvent effects on NMR (Sadlej Pecul) and EPR (Barone, Cimino Pavone) parameters are presented and discussed within the PCM as well their generalizations to hybrid continuum/discrete approaches in which the presence of specific interactions (e.g. solute-solvents H-bonds) is explicitly taken into account by including some solvent molecules strongly interacting with the solute. [Pg.632]

Solvent effects on vibrational spectroscopies are analyzed by Cappelli using classical and quantum mechanical continuum models. In particular, PCM and combined PCM/discrete approaches are used to model reaction and local field effects. [Pg.632]

IR, Raman and related phenomena) to describe with a static approach the salient aspects of phenomena, which are essentially of a dynamical nature [1], This regime was later shown to be essential for a correct description of the photophysical phenomena. It introduces in the QM formalism aspects that are not present in the standard formulation, particularly, that the excited states activated by the excitation process are not orthogonal to the fundamental one (a similar effect is present in the emission process). The orthogonality among states is a basic tenet of the standard formulation, and the selection rules are based on this property. The description obtained with this model is more realistic than the standard one, when the chromophore is immersed into a responsive medium. Discrete solvent simulation methods could hardly describe these effects. [Pg.21]

Ref. (234) reported a theoretical study of the solvent effects on various isomers of the palladium hydride complex PdH3Cl(NH3)2 in dichloromethane. The influence of the solvent was investigated by discrete MP2 and SAPT, and continuum SCRF calculations. The theoretical relation between SCRF and SAPT, Eq. (1-177), was fully confirmed by the numerical results from the discrete SAPT and continuum SCRF calculations, cf. Table 1-7 and Figure 1-4. Interestingly, both the discrete MP2 and continuum SCRF models predicted the same relative stabilities for the isomers of PdH3Cl(NH3)2 in dichloromethane. Small energetic differences between the results of the discrete and continuum calculations could be explained by the entropy effects, neglected in the discrete model. [Pg.64]

We have presented and compared different solvation models (continuum, discrete, continuum + discrete) to study solvent effects on molecular properties. In particular, the nitrogen nuclear shielding, which is known to be very sensitive to even small modifications of electronic and/or nuclear charge distributions, has been analyzed. Such alternation/combination of different models has been required to study the complex nature of solute-solvent interactions when both long-range polar and shorter-range specific H-bond effects are active. [Pg.19]

THE DISCRETE REACTION FIELD APPROACH FOR CALCULATING SOLVENT EFFECTS... [Pg.39]

Kongsted J, Mennucci B (2007) How to model solvent effects on molecular properties using quantum chemistry Insights from polarizable discrete or continuum solvation models. J Phys Chem A 111 9890-9900... [Pg.234]


See other pages where Discrete solvent effects is mentioned: [Pg.61]    [Pg.61]    [Pg.63]    [Pg.65]    [Pg.319]    [Pg.323]    [Pg.61]    [Pg.61]    [Pg.63]    [Pg.65]    [Pg.319]    [Pg.323]    [Pg.37]    [Pg.286]    [Pg.686]    [Pg.225]    [Pg.505]    [Pg.37]    [Pg.241]    [Pg.33]    [Pg.37]    [Pg.107]    [Pg.146]    [Pg.159]    [Pg.160]    [Pg.161]    [Pg.356]    [Pg.356]    [Pg.279]    [Pg.630]    [Pg.84]    [Pg.85]    [Pg.160]    [Pg.230]    [Pg.45]    [Pg.83]    [Pg.558]    [Pg.110]    [Pg.112]   
See also in sourсe #XX -- [ Pg.319 , Pg.323 ]




SEARCH



Discrete Solvent Effects Around Dehydrons

© 2024 chempedia.info