Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Direct radiation recombination

At the chemical level, a solute molecule (DNA, RNA, and protein) in a biological system can be affected by radiation in two different ways. When an ionization track passes either directly through a molecule or close enough so that the created ions can drift to and interact chemically with the molecule before they recombine and neutralize in solution, the phenomenon is called a direct radiation effect. On the other hand, since the largest fraction of almost any biological system consists of water (e.g., 70-80% of a typical cell), the most frequent initial radiation interactions will be with water molecules. When this occurs, ion radicals and free radicals are created. [Pg.2190]

Remember from Chapter 4 that the periods and frequencies of waves are reciprocally related.) Exactly those properties are expressed by their reciprocal lattice vectors h. The amplitudes of these electron density waves vary according to the distribution of atoms about the planes. Although the electron density waves in the crystal cannot be observed directly, radiation diffracted by the planes (the Fourier transforms of the electron density waves) can. Thus, while we cannot recombine directly the spectral components of the electron density in real space, the Bragg planes, we can Fourier transform the scattering functions of the planes, the Fhki, and simultaneously combine them in such a way that the end result is the same, the electron density in the unit cell. In other words, each Fhki in reciprocal, or diffraction space is the Fourier transform of one family of planes, hkl. With the electron density equation, we both add these individual Fourier transforms together in reciprocal space, and simultaneously Fourier transform the result of that summation back into real space to create the electron density. [Pg.121]

The most direct and easy way consists in focusing the laser pulse onto a solid target and to collect the radiation emitted by the produced plasma. The wide emitted spectrum extends from infrared to X-rays and it is produced by different physical mechanisms Bremsstrahlung, recombination, resonant lines, K-shell emission from neutral (or partially ionized) atoms. In particular, this latter mechanism has been recognized, since a decade, as a way of producing ultrashort monochromatic radiation pulses at energy up to several keV. [Pg.168]

A diagram of a typical interferometer (Michelson type) is shown in Figure 7.8. It consists of fixed and moving front-surface plane mirrors (A and B) and a beamsplitter. Collimated infrared radiation from the source incident on the beamsplitter is divided into two beams of equal intensity that pass to the fixed and moving mirrors respectively. Each is reflected back on itself, recombining at the beamsplitter from where they are directed through the sample compartment and onto the detector. Small... [Pg.280]

Figure 4.5 Schematic diagram of a Fourier transform infrared (FTIR) spectrometer. Infrared radiation enters from the left and strikes a beam-splitting mirror (BS) angled such that half of the beam is directed towards a fixed mirror (Mi) and half towards a moveable mirror (M2). On reflection the beam is recombined and directed through the sample towards the detector. M2 is moved in and out by fractions of a wavelength creating a phase difference between the two beam paths. This type of device is called a Michelson interferometer. Figure 4.5 Schematic diagram of a Fourier transform infrared (FTIR) spectrometer. Infrared radiation enters from the left and strikes a beam-splitting mirror (BS) angled such that half of the beam is directed towards a fixed mirror (Mi) and half towards a moveable mirror (M2). On reflection the beam is recombined and directed through the sample towards the detector. M2 is moved in and out by fractions of a wavelength creating a phase difference between the two beam paths. This type of device is called a Michelson interferometer.
Figures 2.13(a) and 2.13(b) illustrate the basis of a semiconductor diode laser. The laser action is produced by electronic transitions between the conduction and the valence bands at the p-n junction of a diode. When an electric current is sent in the forward direction through a p-n semiconductor diode, the electrons and holes can recombine within the p-n junction and may emit the recombination energy as electromagnetic radiation. Above a certain threshold current, the radiation field in the junction becomes sufficiently intense to make the stimulated emission rate exceed the spontaneous processes. Figures 2.13(a) and 2.13(b) illustrate the basis of a semiconductor diode laser. The laser action is produced by electronic transitions between the conduction and the valence bands at the p-n junction of a diode. When an electric current is sent in the forward direction through a p-n semiconductor diode, the electrons and holes can recombine within the p-n junction and may emit the recombination energy as electromagnetic radiation. Above a certain threshold current, the radiation field in the junction becomes sufficiently intense to make the stimulated emission rate exceed the spontaneous processes.
The rectifier, or diode, is an electronic device that allows current to flow in only one direction. There is low resistance to current flow in one direction, called the forward bias, and a high resistance to current flow in the opposite direction, known as the reverse bias. The operation of a pn rectifying junction is shown in Figure 6.17. If initially there is no electric field across the junction, no net current flows across the junction under thermal equilibrium conditions (Figure 6.17a). Holes are the dominant carriers on the / -side, and electrons predominate on the n-side. This is a dynamic equilibrium Holes and conduction electrons are being formed due to thermal agitation. When a hole and an electron meet at the interface, they recombine with the simultaneous emission of radiation photons. This causes a small flow of holes from the jp-region... [Pg.557]

Changes in intensity of semiconductor PL or EL can be used to detect molecular adsorption onto semiconductor surfaces [1,3]. PL occurs most efficiently when ultra-band-gap radiation excites electrons from the valence band to the conduction band of a direct-band-gap semiconductor and the electrons recombine radiatively with the holes left behind in the valence band. [Pg.346]

The number of free ions (i.e. those which have escaped geminate recombination) formed per 100 eV of radiation absorbed by the liquid is termed Gfi (see the end of Sect. 2.4). It is directly proportional to the escape probability, P(E), of the ion-pair in an applied electric field, E. [Pg.177]

The inelastically scattered electrons and the secondary electrons produce charge carriers in the phosphor, which then recombine with emission of luminescent radiation, either directly or after traveling in the lattice. [Pg.238]

The heart of a Fourier transform infrared spectrophotometer is the interferometer in Figure 20-26. Radiation from the source at the left strikes a beamsplitter, which transmits some light and reflects some light. For the sake of this discussion, consider a beam of monochromatic radiation. (In fact, the Fourier transform spectrophotometer uses a continuum source of infrared radiation, not a monochromatic source.) For simplicity, suppose that the beamsplitter reflects half of the light and transmits half. When light strikes the beamsplitter at point O, some is reflected to a stationary mirror at a distance OS and some is transmitted to a movable mirror at a distance OM. The rays reflected by the mirrors travel back to the beamsplitter, where half of each ray is transmitted and half is reflected. One recombined ray travels in the direction of the detector, and another heads back to the source. [Pg.443]

During their diffusive walks, H centres can either approach their own F centres to within the distance r ro and recombine with them in the course of the so-called geminate (monomolecular) reaction or leave them behind in their random walks. Some of these H centres recombine with foreign F centres, thus participating in bimolecular reactions. The rest of the H centres become trapped by impurities, dislocations, or aggregate in the form of immobile dimer H2 centres thus going out of the secondary reactions as shown in Fig. 3.4. In other words, the survival probability of the geminate pairs (F centres) directly defines the defect accumulation efficiency and thus, a material s sensitivity to radiation. [Pg.145]

As it was said in Section 3.1, the survival probability of the geminate pairs oj 1 [ oo) directly defines the efficiency of the Frenkel defect accumulation in solids. Let us assume that the concentration of radiation-created defects is n. Then after a transient period during which mobile interstitials recombine with their geminate partners or leave them thus surviving, we have nacc of stable defects obeying the relation nacc = rjn, where r = cu(oo) is accumulation efficiency, which could be identified with the survival probability of a single mobile interstitial (provided that different geminate pairs do not mix). [Pg.160]

Up to now we have been discussing in this Chapter many-particle effects in bimolecular reactions between non-interacting particles. However, it is well known that point defects in solids interact with each other even if they are not charged with respect to the crystalline lattice, as it was discussed in Section 3.1. It should be reminded here that this elastic interaction arises due to overlap of displacement fields of the two close defects and falls off with a distance r between them as U(r) = — Ar 6 for two symmetric (isotropic) defects in an isotropic crystal or as U(r) = -Afaqjr-3, if the crystal is weakly anisotropic [50, 51] ([0 4] is an angular dependent cubic harmonic with l = 4). In the latter case, due to the presence of the cubic harmonic 0 4 an interaction is attractive in some directions but turns out to be repulsive in other directions. Finally, if one or both defects are anisotropic, the angular dependence of U(f) cannot be presented in an analytic form [52]. The role of the elastic interaction within pairs of the complementary radiation the Frenkel defects in metals (vacancy-interstitial atom) was studied in [53-55] it was shown to have considerable impact on the kinetics of their recombination, A + B -> 0. [Pg.356]

As mentioned at the beginning of this section, the primary ionization must be collected to make a direct measurement of the energy of nuclear radiation. Condensed phases have higher densities than gases and so provide more efficient stopping of the radiation per unit length. However, metals allow rapid recombination of the elec-tron/positive ion pairs and insulators inhibit the collection of the charge. Therefore, only semiconductors have been used extensively for radiation detectors. Metals and... [Pg.548]


See other pages where Direct radiation recombination is mentioned: [Pg.245]    [Pg.195]    [Pg.144]    [Pg.144]    [Pg.77]    [Pg.231]    [Pg.440]    [Pg.281]    [Pg.269]    [Pg.150]    [Pg.80]    [Pg.215]    [Pg.331]    [Pg.16]    [Pg.98]    [Pg.268]    [Pg.561]    [Pg.563]    [Pg.105]    [Pg.354]    [Pg.221]    [Pg.135]    [Pg.177]    [Pg.49]    [Pg.322]    [Pg.323]    [Pg.340]    [Pg.221]    [Pg.947]    [Pg.1287]    [Pg.182]    [Pg.195]    [Pg.72]    [Pg.304]   
See also in sourсe #XX -- [ Pg.136 , Pg.141 , Pg.142 ]

See also in sourсe #XX -- [ Pg.136 , Pg.141 , Pg.142 ]




SEARCH



Direct recombination

Radiation direct

Recombination radiation

© 2024 chempedia.info