Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heating direct

Even if the reactor temperature is controlled within acceptable limits, the reactor effluent may need to be cooled rapidly, or quenched, to stop the reaction quickly to prevent excessive byproduct formation. This quench can be accomplished by indirect heat transfer using conventional heat transfer equipment or by direct heat transfer by mixing with another fluid. A commonly encountered situation is... [Pg.42]

In fact, cooling of the reactor effluent by direct heat transfer can be used for a variety of reasons ... [Pg.43]

The liquid used for the direct heat transfer should be chosen such that it can be separated easily from the reactor product and so recycled with the minimum expense. Use of extraneous materials, i.e., materials that do not already exist in the process, should be avoided because it is often difficult to separate and recycle them with high efficiency. Extraneous material not recycled becomes an effluent problem. As we shall discuss later, the best way to deal with effluent problems is not to create them in the first place. [Pg.43]

Reactor heat carrier. Also as pointed out in Sec. 2.6, if adiabatic operation is not possible and it is not possible to control temperature by direct heat transfer, then an inert material can be introduced to the reactor to increase its heat capacity flow rate (i.e., product of mass flow rate and specific heat capacity) and to reduce... [Pg.100]

The thermal profile through the reactor will in most circumstances be carefully optimized to maximize selectivity, extend catalyst life, etc. Because of this, direct heat integration with other process streams is almost never carried out. The heat transfer to or from the reactor is instead usually carried out by a heat transfer intermediate. For example, in exothermic reactions, cooling might occur by boiling water to raise steam, which, in turn, can be used to heat cold streams elsewhere in the process. [Pg.327]

The reactor effluent might require cooling by direct heat transfer because the reaction needs to be stopped quickly, or a conventional exchanger would foul, or the reactor products are too hot or corrosive to pass to a conventional heat exchanger. The reactor product is mixed with a liquid that can be recycled, cooled product, or an inert material such as water. The liquid vaporizes partially or totally and cools the reactor effluent. Here, the reactor Teed is a cold stream, and the vapor and any liquid from the quench are hot streams. [Pg.329]

Then detach and reverse the condenser, and reconnect it to the flask through a knee-tube for direct distillation, as shown in Fig. 60, p. 101, or Fig. 23(0), p. 45. Distil the mixture, by direct heating over a gauze, until about 8 ml. of distillate have been collected. Acetic acid is volatile in steam and an aqueous solution of the acid, containing, however, some acetaldehyde, is thus obtained. With a very small portion of this solution, perform the tests for acetic acid given on p. 347. [Pg.76]

A considerable amount of the formic acid, however, still remains behind in the distilling-flask as the unhydrolysed monoformate. Therefore, if time allows, dilute the residue in the flask with about an equal volume of water, and then steam-distil, the monoformate ester being thus completely hydrolysed and the formic acid then driven over in the steam. Collect about 400 ml. of distillate. Add this distillate to that obtained by direct heating of the reaction mixture and then treat with lead carbonate as described above. Total yield of lead formate is now about 40 g. [Pg.114]

Place in the flask 2 g. of benzophenone, 15 ml. of isopropanol and 2 5 g. of aluminium isopropoxide. This mixture has now to be heated gently under reflux so that the temperature registered by the thermometer in the column does not exceed 80°, i.e., so that only acetone distils. For this purpose, the flask should preferably be heated in an oil-bath direct heating, even over an asbestos sheet, may cause local overheating and decomposition the use of a water-bath on the other hand may make the column undesirably damp. [Pg.154]

Gently warm a mixture of 32 g. (32 ml.) of ethyl acetoacetate and 10 g. of aldehyde-ammonia in a 400 ml. beaker by direct heating on a gauze, stirring the mixture carefully with a thermometer. As soon as the reaction starts, remove the heating, and replace it when the reaction slackens, but do not allow the temperature of the mixture to exceed 100-no the reaction is rapidly completed. Add to the mixture about twice its volume of 2A -hydrochloric acid, and stir the mass until the deposit either becomes solid or forms a thick paste, according to the quality of the aldehyde-ammonia employed. Decant the aqueous acid layer, repeat the extraction of the deposit with more acid, and again decant the acid, or filter off the deposit if it is solid. Transfer the deposit to a conical flask and recrystallise it twice from ethanol (or methylated spirit) diluted with an equal volume of water. The i,4-dihydro-collidine-3,5-dicarboxylic diethyl ester (I) is obtained as colourless crystals, m.p. 130-131°. Yield 12 5 g,... [Pg.296]

The best replacement for borosilicate glassware is stainless steel. Stainless steel takes the heat, won t break, and, most importantly, is about as resistant to chemical degradation as the chemist can hope to find. For those items that won t be subjected to direct heat there can be some steel/metal or steel/plastic hybrids. In figure 3 is shown how flasks of any size can be made with two stainless steel mixing bowls welded together. Also shown is the vacuum adaptor and condenser. For the condenser only the inner pipe need be steel. The outside pipe can be copper or something. As for the other components of a distillation set up, well, they are made just as they look. [Pg.19]

Fig. 1. Main types of electric furnaces (a) resistance furnace, indirect heat (resistor furnace) (b) resistance furnace, direct heat (c) arc furnace (d) induction furnace. A, charge to be heated or melted B, refractory furnace lining C, electric power supply D, resistors E, electrodes F, electric arc G,... Fig. 1. Main types of electric furnaces (a) resistance furnace, indirect heat (resistor furnace) (b) resistance furnace, direct heat (c) arc furnace (d) induction furnace. A, charge to be heated or melted B, refractory furnace lining C, electric power supply D, resistors E, electrodes F, electric arc G,...
One design for a low temperature convection furnace shown in Figure 4 utilizes an external circulating fan, heating chamber, and duct system. The fan draws air (or a protective atmosphere) from the furnace and passes through the external heating chamber and back into the furnace past the work. This system minimizes the chance that the work receives any direct heat radiation. In theory it is less efficient because the external blower, heating chamber, and ductwork add external surfaces that are subject to heat losses. [Pg.135]

There are large-scale operations using direct-heat resistance furnaces. These are mainly in melting bulk materials where the Hquid material serves as a uniform resistor. The material is contained in a cmcible of fixed dimensions which, coupled with a given resistivity of the material, fixes the total resistance within reasonable limits. The most common appHcation for this type of direct-heat electric resistance furnace is the melting of glass (qv) and arc furnaces for the melting of steel (qv). [Pg.138]

DH = direct heat IH = indirect heat. Heat-tiansfei medium is given in parentheses. CC = countercurrent CO is concurrent. [Pg.348]

P r ho. The Paraho retorting technology is similar to the PETROSIX technology except that it can be operated in the direct heat (DH) mode. The unique feature of the Paraho technology is the two levels of heat input (Fig. 4). In the IH mode, the air blower shown in Figure 4 is replaced by a recycle gas heater. The Paraho DH operation has been carried out neat Rifle, Colorado since the 1970s operations to produce asphalt (qv) from shale oil are continuing. [Pg.349]

By comparison, temperatures as high as 150°C are often required for mold-enclosed hard natural mbber compounds, where mold plattens are directly heated by steam or electricity. Synthetic latex mbber compounds, however, can be vulcanised at temperatures higher than those for natural mbber neoprene and acrylonitrile—butadiene can be vulcanised at as high as 135°C. [Pg.261]

Bitumen is a hydrogen-deficient oil that is upgraded by carbon removal (coking) or hydrogen addition (hydrocrackiag) (2,4). There are two methods by which bitumen conversion can be achieved by direct heating of mined tar sand and by thermal decomposition of separated bitumen. The latter is the method used commercially, but the former has potential for commercialisation (see Fuels, SYNTHETIC). [Pg.360]

Evaporative efficiency in a direct-heat dryer compares vaporization obtained to that which would be obtained if the drying gas were saturated adiabatically. [Pg.237]


See other pages where Heating direct is mentioned: [Pg.9]    [Pg.105]    [Pg.164]    [Pg.564]    [Pg.1113]    [Pg.15]    [Pg.216]    [Pg.87]    [Pg.92]    [Pg.114]    [Pg.334]    [Pg.279]    [Pg.364]    [Pg.226]    [Pg.9]    [Pg.118]    [Pg.138]    [Pg.138]    [Pg.272]    [Pg.273]    [Pg.417]    [Pg.539]    [Pg.347]    [Pg.525]    [Pg.110]    [Pg.360]    [Pg.479]    [Pg.506]    [Pg.313]    [Pg.237]   
See also in sourсe #XX -- [ Pg.208 ]




SEARCH



© 2019 chempedia.info