Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dirac-Hartree-Fock equations approximations

The relativistic or non-relativistic random-phase approximation (RRPA or RPA)t is a generalized self-consistent field procedure which may be derived making the Dirac/Hartree-Fock equations time-dependent. Therefore, the approach is often called time-dependent Dirac/Hartree-Fock. The name random phase comes from the original application of this method to very large systems where it was argued that terms due to interactions between many alternative pairs of excited particles, so-called two-particle-two-hole interactions ((2p-2h) see below) tend to... [Pg.209]

The modified two-electron terms contain all the relativistic integrals, which means that the integral work is no different from that in the full solution of the Dirac-Hartree-Fock equations. It would save a lot of work if we could approximate the integrals, in the same way as we did for the Douglas-Kroll-Hess approximation. To do so, we must use the normalized Foldy-Wouthuysen transformation. The DKH approximation neglects the commutator of the transformation with the two-electron Coulomb operator, and in so doing removes all the spin-dependent terms. We must therefore also use a spin-free one-electron Hamiltonian. The approximate Hamiltonian (in terms of operators rather than matrices) is... [Pg.390]

Accounting for relativistic effects in computational organotin studies becomes complicated, because Hartree-Fock (HF), density functional theory (DFT), and post-HF methods such as n-th order Mpller-Plesset perturbation (MPn), coupled cluster (CC), and quadratic configuration interaction (QCI) methods are non-relativistic. Relativistic effects can be incorporated in quantum chemical methods with Dirac-Hartree-Fock theory, which is based on the four-component Dirac equation. " Unformnately the four-component Flamiltonian in the all-electron relativistic Dirac-Fock method makes calculations time consuming, with calculations becoming 100 times more expensive. The four-component Dirac equation can be approximated by a two-component form, as seen in the Douglas-Kroll (DK) Hamiltonian or by the zero-order regular approximation To address the electron cor-... [Pg.270]

There have been several successful applications of the Dirac-Hartree-Fock (DHF) equations to the calculation of numerical electronic wave functions for diatomic molecules (Laaksonen and Grant 1984a, 1984b, Sundholm 1988, 1994, Kullie et al. 1999). However, the use of numerical techniques in relativistic molecular calculations encounters the same difficulties as in the nonrelativistic case, and to proceed to general applications beyond simple diatomic and linear molecules it is necessary to resort to an analytic approximation using a basis set expansion of the wave function. The techniques for such calculations may to a large extent be based on the methods developed for nonrelativistic calculations, but it turns out that the transfer of these methods to the relativistic case requires special considerations. These considerations, as well as the development of the finite basis versions of both the Dirac and DHF equations, form the subject of the present chapter. [Pg.174]

Dirac s one-particle equation was soon generalized to an equation for an electron in the self-consistent field of the other electrons in an atom - the relativistic analogue of the Hartree-Fock approximation for many-electron atoms. These equations - together with the proper bookkeeping to account for the notion of the Dirac sea - - are the basis of what is nowadays called Dirac-Hartree-Fock methods in relativistic electronic structure theory. ... [Pg.2503]

Electron correlation effects can be defined as the difference between results obtained from the exact solution of a Schrodinger equation with a specific Hamiltonian, and the results obtained at the imcorrelated level, e.g., at the Hartree-Fock or Dirac-Hartree-Fock level. Since for all but the simplest problems the exact solution of the Schrodinger equation is not accessible and usually approximate correlated wavefunctions are used instead. Sometimes experimental values are used rather than the results for the exact solution, which is reasonable as long as the Hamiltonian used for the uncorrelated solution includes all important terms, e.g., with regard to relativistic contributions, influence of the environment of the studied system, etc. As for relativistic effects, the magnitude of electron correlation effects depends to some extent on the details of their evaluation [23]. [Pg.437]

The Xa multiple scattering method generates approximate singledeterminant wavefunctions, in which the non-local exchange interaction of the Hartree-Fock method has been replaced by a local term, as in the Thomas-Fermi-Dirac model. The orbitals are solutions of the one-electron differential equation (in atomic units)... [Pg.60]

Heavy atoms exhibit large relativistic effects, often too large to be treated perturba-tively. The Schrodinger equation must be supplanted by an appropriate relativistic wave equation such as Dirac-Coulomb or Dirac-Coulomb-Breit. Approximate one-electron solutions to these equations may be obtained by the self-consistent-field procedure. The resulting Dirac-Fock or Dirac-Fock-Breit functions are conceptually similar to the familiar Hartree-Fock functions the Hartree-Fock orbitals are replaced, however, by four-component spinors. Correlation is no less important in the relativistic regime than it is for the lighter elements, and may be included in a similar manner. [Pg.161]

In this paper we present the first application of the ZORA (Zeroth Order Regular Approximation of the Dirac Fock equation) formalism in Ab Initio electronic structure calculations. The ZORA method, which has been tested previously in the context of Density Functional Theory, has been implemented in the GAMESS-UK package. As was shown earlier we can split off a scalar part from the two component ZORA Hamiltonian. In the present work only the one component part is considered. We introduce a separate internal basis to represent the extra matrix elements, needed for the ZORA corrections. This leads to different options for the computation of the Coulomb matrix in this internal basis. The performance of this Hamiltonian and the effect of the different Coulomb matrix alternatives is tested in calculations on the radon en xenon atoms and the AuH molecule. In the atomic cases we compare with numerical Dirac Fock and numerical ZORA methods and with non relativistic and full Dirac basis set calculations. It is shown that ZORA recovers the bulk of the relativistic effect and that ZORA and Dirac Fock perform equally well in medium size basis set calculations. For AuH we have calculated the equilibrium bond length with the non relativistic Hartree Fock and ZORA methods and compare with the Dirac Fock result and the experimental value. Again the ZORA and Dirac Fock errors are of the same order of magnitude. [Pg.251]

After the discovery of the relativistic wave equation for the electron by Dirac in 1928, it seems that all the problems in condensed-matter physics become a matter of mathematics. However, the theoretical calculations for surfaces were not practical until the discovery of the density-functional formalism by Hohenberg and Kohn (1964). Although it is already simpler than the Hartree-Fock formalism, the form of the exchange and correlation interactions in it is still too complicated for practical problems. Kohn and Sham (1965) then proposed the local density approximation, which assumes that the exchange and correlation interaction at a point is a universal function of the total electron density at the same point, and uses a semiempirical analytical formula to represent such universal interactions. The resulting equations, the Kohn-Sham equations, are much easier to handle, especially by using modern computers. This method has been the standard approach for first-principles calculations for solid surfaces. [Pg.112]

Relativistic quantum chemistry is currently an active area of research (see, for example, the review volume edited by Wilson [102]), although most of the work is beyond the scope of this course. Much of the effort is based on Dirac s relativistic formulation of the Schrodinger equation this results in wave functions that have four components rather than the single component we conventionally think of. As a consequence the mathematical and computational complications are substantial. Nevertheless, it is very useful to have programs for Dirac-Fock (the relativistic analogue of Hartree-Fock) calculations available, as they can provide calibration comparisons for more approximate treatments. We have developed such a program and used it for this purpose [103]. [Pg.393]

Historically16 it is worthy of note that if one resorts in equation (51) to the TF approximation (18) for tr, then the Euler equation of the Thomas-Fermi-Dirac method results. We shall not go into the solutions of the Thomas-Fermi-Dirac equation in this review, though there has been recent interest in this area. Suffice it to say that in the full form of the Euler equation (51), we are working at the customary Hartree-Fock-Slater level. However, we shall content ourselves, until we come to Section 17 below, with understanding in a more intuitive, but inevitably less detailed, way how the corrections to the TF energy in equation (48) arise. [Pg.103]

These very complicated inhomogeneous coupled differential equations can again be simplified by using Slater s approximation. This method is therefore called the relativistic Hartree-Fock-Slater or Dirac-Fock-Slater (DFS) 52—53) calculations, and they have also been done by several authors for the superheavy elements 54-56). [Pg.100]

Eq. 20 can be solved iteratively and yields the same one-particle energies as the corresponding Dirac-equation. The radial functions P K r) correspond to the large components. In the many-electron case the correct nonlocal Hartree-Fock potential is used in Eq. 21, but a local approximation to it in Eqs. 22. Averaging over the relativistic quantum number k leads to a scalar-relativistic scheme. [Pg.806]


See other pages where Dirac-Hartree-Fock equations approximations is mentioned: [Pg.23]    [Pg.483]    [Pg.314]    [Pg.360]    [Pg.394]    [Pg.373]    [Pg.213]    [Pg.442]    [Pg.122]    [Pg.213]    [Pg.108]    [Pg.112]    [Pg.248]    [Pg.255]    [Pg.365]    [Pg.614]    [Pg.632]    [Pg.642]    [Pg.334]    [Pg.100]    [Pg.336]    [Pg.314]    [Pg.55]    [Pg.108]    [Pg.664]    [Pg.668]    [Pg.813]    [Pg.932]    [Pg.82]    [Pg.179]   
See also in sourсe #XX -- [ Pg.39 , Pg.242 ]




SEARCH



Dirac equation

Dirac-Fock

Dirac-Fock approximation

Dirac-Fock equation

Dirac-Hartree

Dirac-Hartree-Fock

Dirac-Hartree-Fock approximation

Equation Dirac-Hartree-Fock

Fock equations

Hartree Fock equation

Hartree approximation

Hartree equation

Hartree-Fock approximation

Hartree-Fock approximation equation

© 2024 chempedia.info