Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dilution area

ECC catalyst is subject to hydrothermal deactivation. This occurs when the A1 atom in the zeolitic cage is removed in the presence of water vapor and temperature. The result is a loss of activity and unit conversion. The effect of temperature on this process is nonlinear. The deactivation rate increases exponentially with temperature. Units that experience high afterburn have attributed high rates of catalyst deactivation on the higher dilute phase temperatures. This phenomenon is more apparent on units with high combustion air superficial velocities. The high velocity not only increases afterburn, but also increases catalyst entrainment to the cyclones and dilute area. COP is used to decrease afterburn and minimize catalyst deactivation. [Pg.285]

The solution for a release of combustible substances has been found in the dilution area (Fig. 7.1). In this part of the pressurized room surrounding the... [Pg.423]

Figure 7.1 Pressurized analyser for zone 1 application. Some parts of the containment system may show a release of a combustible substance which can be handled in a safe way in a dilution area. Figure 7.1 Pressurized analyser for zone 1 application. Some parts of the containment system may show a release of a combustible substance which can be handled in a safe way in a dilution area.
Gibbs equation of surface concentration This equation relates the surface tension (y) of a solution and the amount (T) of the solute adsorbed at unit area of the surface. For a single non-ionic solute in dilute solution the equation approximates to... [Pg.189]

Another type of reaction that has been studied is that of the oxidation of a double bond. In the case of triolein, Mittelmann and Palmer [309] found that, on a dilute permanganate substrate, the area at constant him pressure hrst increased and then decreased. The increase was attributed to the reaction... [Pg.155]

A drop of a dilute solution (1%) of an amphiphile in a solvent is typically placed on tlie water surface. The solvent evaporates, leaving behind a monolayer of molecules, which can be described as a two-dimensional gas, due to tlie large separation between tlie molecules (figure C2.4.3). The movable barrier pushes tlie molecules at tlie surface closer together, while pressure and area per molecule are recorded. The pressure-area isotlienn yields infonnation about tlie stability of monolayers at tlie water surface, a possible reorientation of tlie molecules in tlie two-dimensional system, phase transitions and changes in tlie confonnation. Wliile being pushed togetlier, tlie layer at... [Pg.2611]

A standard sample of 57.22% w/w CE was analyzed by placing 0.1011 g in a 100-mL volumetric flask and diluting to volume. Three unknowns were prepared by pipeting 0.250 mL, 0.500 mL, and 0.750 mL of the bulk unknown into separate 50-mL volumetric flasks and diluting to volume. Analysis of the three unknowns gave areas of 15310, 31546, and 47582, respectively. Evaluate the accuracy of this analysis. [Pg.619]

Since capillary tubing is involved in osmotic experiments, there are several points pertaining to this feature that should be noted. First, tubes that are carefully matched in diameter should be used so that no correction for surface tension effects need be considered. Next it should be appreciated that an equilibrium osmotic pressure can develop in a capillary tube with a minimum flow of solvent, and therefore the measured value of II applies to the solution as prepared. The pressure, of course, is independent of the cross-sectional area of the liquid column, but if too much solvent transfer were involved, then the effects of dilution would also have to be considered. Now let us examine the practical units that are used to express the concentration of solutions in these experiments. [Pg.550]

Methods to Detect and Quantitate Viral Agents in Fluids. In order to assess the effectiveness of membrane filtration the abihty to quantitate the amount of vims present pre- and post-filtration is critical. There are a number of techniques used. The method of choice for filter challenge studies is the plaque assay which utilizes the formation of plaques, localized areas in the cell monolayer where cell death caused by viral infection in the cell has occurred on the cell monolayer. Each plaque represents the presence of a single infectious vims. Vims quantity in a sample can be determined by serial dilution until the number of plaques can be accurately counted. The effectiveness of viral removal may be determined, as in the case of bacterial removal, by comparing the vims concentration in the input suspension to the concentration of vims in the effluent. [Pg.143]

Known engineering principles must be appHed even in areas of extremely dilute concentration. [Pg.385]

In the flame phase the water vapor forms an envelope around the flame, which tends to exclude air and dilute the flammable gases. The water vapor reacts endothermically with the flame radicals. The alumina residue becomes a conduit through which heat is conveyed away from the flame area, slowing down polymer decomposition. [Pg.458]

Fluorine in the atmosphere can be detected by chemical methods involving the displacement of halogens from haUdes. Dilute fluorine leaks are easily detected by passing a damp piece of starch iodide paper around the suspected area. The paper should be held with metal tongs or forceps to avoid contact with the gas stream and immediately darkens when fluorine is present. [Pg.130]

In 1954 the surface fluorination of polyethylene sheets by using a soHd CO2 cooled heat sink was patented (44). Later patents covered the fluorination of PVC (45) and polyethylene bottles (46). Studies of surface fluorination of polymer films have been reported (47). The fluorination of polyethylene powder was described (48) as a fiery intense reaction, which was finally controlled by dilution with an inert gas at reduced pressures. Direct fluorination of polymers was achieved in 1970 (8,49). More recently, surface fluorinations of poly(vinyl fluoride), polycarbonates, polystyrene, and poly(methyl methacrylate), and the surface fluorination of containers have been described (50,51). Partially fluorinated poly(ethylene terephthalate) and polyamides such as nylon have excellent soil release properties as well as high wettabiUty (52,53). The most advanced direct fluorination technology in the area of single-compound synthesis and synthesis of high performance fluids is currently practiced by 3M Co. of St. Paul, Minnesota, and by Exfluor Research Corp. of Austin, Texas. [Pg.278]

Many stabilizer systems have been tailored to a particular industry need or for particular areas where dilution water quaUty is poor. These grades are heavily stabilized and may contain organic sequestering agents, ie, staimate, phosphates, and nitrate ions, so that the weak solutions produced by dilution from hard water retain acceptable stabihty. The nitrate is not a stabilizer, but it inhibits corrosion of aluminum storage tanks by chloride ion. [Pg.472]

Mercury spills should be cleaned up immediately by use of a special vacuum cleaner. The area should then be washed with a dilute calcium sulfide solution. Small quantities of mercury can be picked up by mixing with copper metal granules or powder, or with zinc granules or powder. To avoid or minimize spills, some plants use steel trays as pallets so that a spih, whether of mercury or a mercury compound, is contained on the steel tray. [Pg.116]


See other pages where Dilution area is mentioned: [Pg.425]    [Pg.317]    [Pg.425]    [Pg.317]    [Pg.604]    [Pg.69]    [Pg.82]    [Pg.145]    [Pg.392]    [Pg.667]    [Pg.2455]    [Pg.2625]    [Pg.187]    [Pg.252]    [Pg.51]    [Pg.90]    [Pg.140]    [Pg.135]    [Pg.389]    [Pg.114]    [Pg.154]    [Pg.198]    [Pg.26]    [Pg.353]    [Pg.47]    [Pg.151]    [Pg.477]    [Pg.58]    [Pg.145]    [Pg.102]    [Pg.134]    [Pg.69]    [Pg.150]    [Pg.265]    [Pg.266]    [Pg.459]    [Pg.494]   


SEARCH



© 2024 chempedia.info