Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1.2- Diketones alkynes from

Oxidation of Alkynes, Alkenes, and Benzylic Hydrocarbons. The yields of 1,2-diketones from the oxidation of acetylenes by potassium permanganate under aqueous conditions are substantially improved by buffering (pH 7—7.5) the reaction mixture.However, potassium permanganate-phase transfer catalyst in... [Pg.29]

No intennolecular reaction of malonate or /3-keto esters with halides has been reported, but the intramolecular reaction of /3-diketones such as 790 and malonates proceeds smoothly[652,653]. Even the simple ketone 791 can be arylated or alkenylated intramolecularly. In this reaction, slow addition of a base is important to prevent alkyne formation from the vinyl iodide by elim-ination[654]. [Pg.245]

Pyrazoles are formed when the diazo compounds react with alkynes or with functionalized alkenes, viz. the enols of /3-diketones. Pyrazolenines (353 Section 4.04.2.2.1) are isolated from disubstituted diazomethanes. Many pyrazoles, difficult to obtain by other methods, have been prepared by this procedure, for example 3-cyanopyrazole (616) is obtained from cyanoacetylene and diazomethane (7iJCS(C)2i47), 3,4,5-tris(trifiuoromethyl)pyrazole (617) from trifluorodiazoethane and hexafluoro-2-butyne (8lAHC(28)l), and 4-phenyl-3-triflylpyrazole (618 R =H) from phenyltriflylacetylene and diazomethane (82MI40402). An excess of diazomethane causes iV-methylation of the pyrazole (618 R = H) and the two isomers (618 R = Me) and (619) are formed in a ratio of 1 1. [Pg.282]

Hydrazoyl halides are useful reagents for the synthesis of pyrazolines and pyrazoles (80JHC833). The elimination of HX, usually with triethylamine, is now the preferred method for the generation of the nitrilimine (621) in situ. Although in some cases it is not clear if the mechanism involves a nitrilimine (621) (as for example in the Fusco method in which sodium salts of /3-diketones are used), in other reactions it is the most reasonable possibility. For example, the synthesis of pyrazolobenzoxazine (633) from the hydrazoyl halide (631) probably occurs via the nitrilimine (632). Trifluoromethylpyrazoles (634) have been prepared by the reaction of a hydrazoyl halide and an alkynic compound in the presence of triethylamine (82H(19)179). [Pg.284]

Digitoxigenin, structure of, 1097 Digitoxin, structure of, 989 Dihalide, alkynes from, 261 Dihedral angle, 94 Diiodomelhane. Simmons-Smith reaction with, 228-229 Diisobutylaluminum hydride, reaction with esters, 812 structure of, 699 Diisopropylamine, pK.d of, 923 1,3-Diketone, pfCa of, 852 Dimethyl disulfide, bond angles in, 20 structure of, 20 Dimethyl ether, electrostatic... [Pg.1294]

Aside from alcohols, other oxygen nucleophiles have also participated in hydroalkoxylation reactions with alkynes. The most common of these are 1,3-dicarbonyl compounds, whose enol oxygens are readily available to add to alkynes. Cyclization reactions of this type have been carried out under Pd(0) catalysis with various aryl or vinyl iodides or triflates, often in the presence of CO, affording the corresponding furan derivatives (Equation (95)).337-340 A similar approach employing cyclic 1,3-diketones has also been reported to prepare THFs and dihydropyrans under Pd, Pt, or W catalysis.341 Simple l-alkyn-5-ones have also been isomerized to furans under the influence of Hg(OTf)2.342... [Pg.675]

With the bulky metallo-organic Pd(II) catalyst 98, on the other hand, selective formation of 99 was possible here functional groups are tolerated that would react with an Ag(I) catalyst (for example, terminal alkynes, alkyl chlorides, alkyl bromides and alkyl iodides) [59]. With l,n-diallenyl diketones (100), easily accessible by a bidirectional synthesis, up to 52-membered macrocycles (101) could be prepared in an end-group differentiating intramolecular reaction (Scheme 15.26) [60], For ring sizes lager than 12 only the E-diastereomer is formed overall yields of the macrocydes varied between 17 and 38%. Only with tethers shorter than 11 carbon atoms could the Z-diastereomer of the products be observed, a stereoisomer unknown from the intermolecular dimerization reactions of 96. [Pg.891]

Cyanogen Iodide (ICN) has been used extensively for the cyanation of alkenes and aromatic compounds [12], iodination of aromatic compounds [13], formation of disulfide bonds in peptides [14], conversion of dithioacetals to cyanothioacetals [15], formation of trans-olefins from dialkylvinylboranes [16], lactonization of alkene esters [17], formation of guanidines [18], lactamization [19], formation of a-thioethter nitriles [20], iodocyanation of alkenes [21], conversion of alkynes to alkyl-iodo alkenes [22], cyanation/iodination of P-diketones [23], and formation of alkynyl iodides [24]. The products obtained from the reaction of ICN with MFA in refluxing chloroform were rrans-16-iodo-17-cyanomarcfortine A (14)... [Pg.336]

Diaryl-1,2,3,5-oxathiadiazines (277 from sulfur trioxide and aryl isocyanates) with (3-diketones yield pyrimidines (278). s-Triazine reacts with RCH2CN to give 4-aminopyrimidines (279 see Section 3.2.1.6.1 for a similar reaction), and with electron-rich alkenes and alkynes to yield pyrimidines such as (280) from EtC = CMe (Section 3.2.1.10.2). [Pg.579]

The reaction was rationalized by a ruthenium enolate mechanism (Fig. 4). Water served as a nucleophile and added to alkynes then the intermediate isomerized to give a ruthenium enolate, which then underwent addition to a-vinyl ketone followed by protonation to afford the 1,5-diketone. During the reaction, no ketone resulting from the hydration of the alkynes was found, which showed that the conjugate addition is faster than protonation of the ruthenium enolate in this aqueous reaction. [Pg.329]

Dihydropyran-2-ones result in moderate yield from Rh-catalysed three component reactions involving allenoates, arylboronic acids and benzaldehydes <07T6210> and in ionic liquids the Pd-catalysed three component coupling of alkynes, 1,3-diketones and CO affords highly substituted 3,4-dihydropyran-2-ones <07OL1647>. [Pg.413]

Sonogashira coupling of alkyne 50 with aryl iodide 51 affords the diaryl alkyne 52 oxidation of which produces the 1,2-diketone 53. Hydrolysis of the acetal moiety prior to a proline-induced aldol cyclisation generates a chromanone from which the [ljbenzopyrano-[2,3-c][l]benzopyranone rotenoid system is obtained <07T11878>. [Pg.418]


See other pages where 1.2- Diketones alkynes from is mentioned: [Pg.207]    [Pg.643]    [Pg.113]    [Pg.123]    [Pg.561]    [Pg.23]    [Pg.103]    [Pg.205]    [Pg.206]    [Pg.567]    [Pg.116]    [Pg.123]    [Pg.969]    [Pg.649]    [Pg.41]    [Pg.45]    [Pg.900]    [Pg.174]    [Pg.123]    [Pg.159]    [Pg.69]    [Pg.23]    [Pg.742]    [Pg.742]    [Pg.969]    [Pg.585]    [Pg.962]   
See also in sourсe #XX -- [ Pg.1523 , Pg.1540 ]




SEARCH



Diketones, diphenyl alkynes from

From alkynes

© 2024 chempedia.info