Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diffusivity different techniques

Diffusion. Another technique for modifying the electrical properties of siUcon and siUcon-based films involves introducing small amounts of elements having differing electrical compositions, dopants, into substrate layers. Diffusion is commonly used. There are three ways dopants can be diffused into a substrate film (/) the surface can be exposed to a chemical vapor of the dopant at high temperatures, or (2) a doped-oxide, or (J) an ion-implanted layer can be used. Ion implantation is increasingly becoming the method of choice as the miniaturization of ICs advances. However, diffusion is used in... [Pg.349]

The earliest attempts to measure the rate of exchange between ferrous and ferric ions in aqueous media utilised the diffusion separation technique. Little agreement was obtained by the different workers Diffusion separation factors, found to be 0.5 , 1.4, 3.5 and 1.2, illustrate the difficulty of the technique. The isotopes used to label the iron were either Fe or Fe, and exchange was found to be complete in hours or many days > in perchlorate media. [Pg.96]

Different techniques are commonly used to solve the diffusion equation (Carslaw and Jaeger, 1959). Analytic solutions can be found by variable separation, Fourier transforms or more conveniently Laplace transforms and other special techniques such as point sources or Green functions. Numerical solutions are calculated for the cases which have no simple analytic solution by finite differences (Mitchell, 1969 Fletcher, 1991), which is the simplest technique to implement, but also finite elements, particularly useful for complicated geometry (Zienkiewicz, 1977), and collocation methods (Finlayson, 1972). [Pg.428]

Nafion absorbs MeOH more selectively than water, and the MeOH diffusion flow is higher than the osmotic water flow in Nafion membranes. Diffusion coefficients of Nafion 117 determined by different techniques have been reported. Ren et al. measured MeOH diffusion coefficients in Nafion 117 membranes exposed to 1.0 M MeOH solutions using pulsed field gradient (PPG) NMR techniques. The MeOH self-diffusion coefficient was 6 x 10 cm S and roughly independent of concentration over the range of 0.5-8.0 M at 30°C. A similar diffusion coefficient was obtained for Nafion 117 at 22°C by Hietala, Maunu, and Sundholm with the same technique. Kauranen and Skou determined the MeOH diffusion coefficient of 4.9 x 10 cm for Nafion... [Pg.123]

The choice of the FFF technique dictates which physicochemical parameters of the analyte govern its retention in the channel FIFFF separates solely by size, SdFFF by both size and density, ThFFF by size and chanical composition, and EIFFF by mass and charge. The dependence of retention on factors other than size can be advantageous in some applications, and different information can be obtained by employing different techniques in combination or in sequence. On the other hand, the properties that can be characterized by FFF include analyte mass, density, volume, diffusion coefficient, charge, electrophoretic mobility, p/ (isoelectric point), molecular weight, and particle diameter. [Pg.351]

In experimental studies of diffusion, the diffusion-couple technique is often used. A diffusion couple consists of two halves of material each is initially uniform, but the two have different compositions. They are joined together and heated up. Diffusive flux across the interface tries to homogenize the couple. If the duration is not long, the concentrations at both ends would still be the same as the initial concentrations. Under such conditions, the diffusion medium may be treated as infinite and the diffusion problem can be solved using Boltzmann transformation. If the diffusion duration is long (this will be quantified later), the concentrations at the ends would be affected, and the diffusion medium must be treated as finite. Diffusion in such a finite medium cannot be solved by the Boltzmann method, but can be solved using methods such as separation of variables (Section 3.2.7) if the conditions at the two boundaries are known. Below, the concentrations at the two ends are assumed to be unaffected by diffusion. [Pg.195]

Diffusivity of a species in a phase is an intrinsic property and does not depend on the experimental method. If diffusivity does not depend on the concentration of the species, then diffusivity extracted from different methods has the same meaning and hence should all agree within experimental error. ITowever, if diffusivity depends on the concentration of the species or component, the meaning of diffusivity extracted using different techniques may differ, leading to difference in diffusivity values. [Pg.297]

A number of different techniques have been developed for studying nonhomogeneous radiolysis kinetics, and they can be broken down into two groups, deterministic and stochastic. The former used conventional macroscopic treatments of concentration, diffusion, and reaction to describe the chemistry of a typical cluster or track of reactants. In contrast, the latter approach considers the chemistry of simulated tracks of realistic clusters using probabilistic methods to model the kinetics. Each treatment has advantages and limitations, and at present, both treatments have a valuable role to play in modeling radiation chemistry. [Pg.87]

Infrared measurements showed that the films had a higher concentration of Si—O—Si bonds than some other silica films made by different techniques. This was interpreted to mean that the silica network of the films was more orderly, a property that was evidenced by greater stability of the films against chemical etch-ning and good blocking properties to sodium diffusion from the soda glass, compared to many other silica films. [Pg.273]

Field flow fractionation (FFF), as a gentle size fractionation coupled to ICP-MS, offers the capability to determine trace metals bound to various size fractions of colloidial and particulate materials.112 On line coupling of FFF with ICP-MS was first proposed by Beckett in 1991 -113 Separation is achieved by the balance between the field force and macromolecular diffusion in the FFF channel. Depending on the field force used, FFF is classified into different techniques such as sedimentation, gravitational, electrical, thermal and flow FFF.112... [Pg.150]

State Fick s laws of diffusion. Describe at least two different techniques to use Fick s laws to measure the diffusion coefficient. [Pg.101]

In this review, we focus on the information at an atomic/molecular level that is obtainable via the different techniques. The precise methods and techniques used are not extensively discussed instead we summarize the relevant details and direct the reader toward key references. Nor do we review the potentials that are used in the classical simulations of sorption and diffusion. Derivation and evaluation of these parameters require extensive comparison with detailed spectroscopic data and are beyond the scope of this work. Similarly, the volume of experimental results that may be used in comparison to the calculations is vast. We use representative data taken largely from reviews or books. [Pg.2]

The pharmaceutical and biological availability of eight commercial furose-mide preparations was compared including two products with modified release properties [67], an enteric-coated tablet and a sustained-release preparation, in the form of a capsule containing diffusion pellets [28], A correlation between the rate of dissolution of different techniques and the area under the plasma concentration time curve was documented. The sustained-release preparation and the enteric-coated formulation clearly showed different pharmacokinetic behavior compared with conventional tablets. Although the literature mentions the maximal absorption at pH 5.5, the modified release formulations only showed a relative bioavailability of 80%. [Pg.32]

Suspended particles arc considered to have finite size thus both the mobility coefficient and diffusion coefficient of the particles depend not only on the size of the particle but also upon the distance between the particle and the collector. A numerical finite-difference technique is used to solve the general transport equation. [Pg.95]

The diffusion-reaction equations are solved using finite-difference techniques employing a multilayer spatial grid to account for the corrosion product deposits present on the fuel and carbon steel surfaces, Fig. 21. For further details the reader is referred to more extensive discussions published elsewhere (6,23). [Pg.233]


See other pages where Diffusivity different techniques is mentioned: [Pg.452]    [Pg.457]    [Pg.394]    [Pg.1069]    [Pg.44]    [Pg.1069]    [Pg.236]    [Pg.128]    [Pg.275]    [Pg.173]    [Pg.159]    [Pg.398]    [Pg.64]    [Pg.65]    [Pg.272]    [Pg.43]    [Pg.403]    [Pg.205]    [Pg.307]    [Pg.439]    [Pg.321]    [Pg.55]    [Pg.493]    [Pg.270]    [Pg.287]    [Pg.167]    [Pg.383]    [Pg.494]    [Pg.120]    [Pg.274]    [Pg.128]    [Pg.320]   
See also in sourсe #XX -- [ Pg.122 ]




SEARCH



Diffusion technique

© 2024 chempedia.info