Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sweep diffusion

The scan rate, u = EIAt, plays a very important role in sweep voltannnetry as it defines the time scale of the experiment and is typically in the range 5 mV s to 100 V s for nonnal macroelectrodes, although sweep rates of 10 V s are possible with microelectrodes (see later). The short time scales in which the experiments are carried out are the cause for the prevalence of non-steady-state diflfiision and the peak-shaped response. Wlien the scan rate is slow enough to maintain steady-state diflfiision, the concentration profiles with time are linear within the Nemst diflfiision layer which is fixed by natural convection, and the current-potential response reaches a plateau steady-state current. On reducing the time scale, the diflfiision layer caimot relax to its equilibrium state, the diffusion layer is thiimer and hence the currents in the non-steady-state will be higher. [Pg.1927]

Similarly to the response at hydrodynamic electrodes, linear and cyclic potential sweeps for simple electrode reactions will yield steady-state voltammograms with forward and reverse scans retracing one another, provided the scan rate is slow enough to maintain the steady state [28, 35, 36, 37 and 38]. The limiting current will be detemiined by the slowest step in the overall process, but if the kinetics are fast, then the current will be under diffusion control and hence obey the above equation for a disc. The slope of the wave in the absence of IR drop will, once again, depend on the degree of reversibility of the electrode process. [Pg.1940]

The bipolar junction transistor (BIT) consists of tliree layers doped n-p-n or p-n-p tliat constitute tire emitter, base and collector, respectively. This stmcture can be considered as two back-to-back p-n junctions. Under nonnal operation, tire emitter-base junction is forward biased to inject minority carriers into tire base region. For example, tire n type emitter injects electrons into a p type base. The electrons in tire base, now minority carriers, diffuse tlirough tire base layer. The base-collector junction is reverse biased and its electric field sweeps tire carriers diffusing tlirough tlie base into tlie collector. The BIT operates by transport of minority carriers, but botli electrons and holes contribute to tlie overall current. [Pg.2891]

Water Transport. Two methods of measuring water-vapor transmission rates (WVTR) ate commonly used. The newer method uses a Permatran-W (Modem Controls, Inc.). In this method a film sample is clamped over a saturated salt solution, which generates the desired humidity. Dry air sweeps past the other side of the film and past an infrared detector, which measures the water concentration in the gas. For a caUbrated flow rate of air, the rate of water addition can be calculated from the observed concentration in the sweep gas. From the steady-state rate, the WVTR can be calculated. In principle, the diffusion coefficient could be deterrnined by the method outlined in the previous section. However, only the steady-state region of the response is serviceable. Many different salt solutions can be used to make measurements at selected humidity differences however, in practice,... [Pg.500]

Process Description Pervaporation is a separation process in which a liquid mixture contacts a nonporous permselective membrane. One component is transported through the membrane preferentially. It evaporates on the downstream side of the membrane leaving as a vapor. The name is a contraction of permeation and evaporation. Permeation is induced by lowering partial pressure of the permeating component, usually by vacuum or occasionally with a sweep gas. The permeate is then condensed or recovered. Thus, three steps are necessary Sorption of the permeating components into the membrane, diffusive transport across the nonporous membrane, then desorption into the permeate space, with a heat effect. Pervaporation membranes are chosen for high selectivity, and the permeate is often highly purified. [Pg.63]

In a typical voltammetric experiment, a constant voltage or a slow potential sweep is applied across the ITIES formed in a micrometer-size orifice. If this voltage is sufficiently large to drive some IT (or ET) reaction, a steady-state current response can be observed (Fig. 1) [12]. The diffusion-limited current to a micro-ITIES surrounded by a thick insulating sheath is equivalent to that at an inlaid microdisk electrode, i.e.,... [Pg.380]

The transient method characterized by linearly changing potential with time is called potential-sweep (potential-scan) voltammetry (cf. Section 5.5.2). In this case the transport process is described by equations of linear diffusion with the potential function... [Pg.299]

In an ideal case the electroactive mediator is attached in a monolayer coverage to a flat surface. The immobilized redox couple shows a significantly different electrochemical behaviour in comparison with that transported to the electrode by diffusion from the electrolyte. For instance, the reversible charge transfer reaction of an immobilized mediator is characterized by a symmetrical cyclic voltammogram ( pc - Epa = 0 jpa = —jpc= /p ) depicted in Fig. 5.31. The peak current density, p, is directly proportional to the potential sweep rate, v ... [Pg.331]

The basic theory of mass transfer to a RHSE is similar to that of a RDE. In laminar flow, the limiting current densities on both electrodes are proportional to the square-root of rotational speed they differ only in the numerical values of a proportional constant in the mass transfer equations. Thus, the methods of application of a RHSE for electrochemical studies are identical to those of the RDE. The basic procedure involves a potential sweep measurement to determine a series of current density vs. electrode potential curves at various rotational speeds. The portion of the curves in the limiting current regime where the current is independent of the potential, may be used to determine the diffusivity or concentration of a diffusing ion in the electrolyte. The current-potential curves below the limiting current potentials are used for evaluating kinetic information of the electrode reaction. [Pg.192]

The RHSE has the same limitation as the rotating disk that it cannot be used to study very fast electrochemical reactions. Since the evaluation of kinetic data with a RHSE requires a potential sweep to gradually change the reaction rate from the state of charge-transfer control to the state of mass transport control, the reaction rate constant thus determined can never exceed the rate of mass transfer to the electrode surface. An upper limit can be estimated by using Eq. (44). If one uses a typical Schmidt number of Sc 1000, a diffusivity D 10 5 cm/s, a nominal hemisphere radius a 0.3 cm, and a practically achievable rotational speed of 10000 rpm (Re 104), the mass transfer coefficient in laminar flow may be estimated to be ... [Pg.201]

Thus, cyclic or linear sweep voltammetry can be used to indicate whether a reaction occurs, at what potential and may indicate, for reversible processes, the number of electrons taking part overall. In addition, for an irreversible reaction, the kinetic parameters na and (i can be obtained. However, LSV and CV are dynamic techniques and cannot give any information about the kinetics of a typical static electrochemical reaction at a given potential. This is possible in chronoamperometry and chronocoulometry over short periods by applying the Butler Volmer equations, i.e. while the reaction is still under diffusion control. However, after a very short time such factors as thermal... [Pg.180]

The first cathodic wave was studied by cycling the potential across it at various scan rates and the peak potentials were found to increase as indicative of a reversible, diffusion-controlled system, with ° = — 1.43 V vs. SCE. However, at sweep rates 20mV/s the peak anodic current is much smaller than expected which was interpreted by the authors as indicating that the reduced species undergoes a subsequent chemical reaction, i.e. an EC process. [Pg.314]

Velocity seals are more recent developments in air seal design. They use conical baffles to redirect and focus the purge gas flow field just below the flare tip to sweep air from the flare stack. Some velocity seal designs can reduce the purge gas flow rate requirement to about 1/10 of the rate needed without the seal. Also, some velocity seal designs reportedly require only about 25 to 33 percent of the purge gas used in diffusion seals (AICliE-CCPS, 1998). More details about air (purge reduction) seals may be found in API RP 521 (2007). [Pg.91]

For the investigation of charge tranfer processes, one has the whole arsenal of techniques commonly used at one s disposal. As long as transport limitations do not play a role, cyclic voltammetry or potentiodynamic sweeps can be used. Otherwise, impedance techniques or pulse measurements can be employed. For a mass transport limitation of the reacting species from the electrolyte, the diffusion is usually not uniform and does not follow the common assumptions made in the analysis of current or potential transients. Experimental results referring to charge distribution and charge transfer reactions at the electrode-electrolyte interface will be discussed later. [Pg.280]

In the first cycle, methanol oxidation peaks are seen in both the anodic and cathodic sweeps around 0.7 V. As mentioned earlier, P -OH formation on Ptdll) does not occur to any substantial extent until 1.2 V. Therefore this current decrease over 0.7 V is not due to deactivation of platinum by the svuface Pt-OH formation. The cxirrent increase on the reversed sweep indicated that this current is not limited by methanol diffusion or active accumulated intermediates, either. It simply seems that platinum loses its catalytic activity over 0.7 V regardless whether platinvim is oxidized or not. Anion effects is not likely the reason because the same phenomena are found in percloric add also. Trace amount of impurities, such as chloride ions, may play some roles. [Pg.127]


See other pages where Sweep diffusion is mentioned: [Pg.6]    [Pg.6]    [Pg.100]    [Pg.455]    [Pg.76]    [Pg.54]    [Pg.2053]    [Pg.391]    [Pg.372]    [Pg.136]    [Pg.1382]    [Pg.29]    [Pg.1005]    [Pg.1006]    [Pg.341]    [Pg.89]    [Pg.1005]    [Pg.1006]    [Pg.648]    [Pg.649]    [Pg.385]    [Pg.199]    [Pg.84]    [Pg.372]    [Pg.296]    [Pg.230]    [Pg.412]    [Pg.253]    [Pg.181]    [Pg.78]    [Pg.417]    [Pg.679]    [Pg.117]    [Pg.485]    [Pg.246]    [Pg.180]   
See also in sourсe #XX -- [ Pg.6 ]




SEARCH



Sweep

Sweep diffusion process

Sweep diffusion, described

© 2024 chempedia.info