Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diffusion-dispersive coefficient

D diffusivity dispersion coefficient // volume fraction of fluid consisting of liquid g acceleration due to gravity k mass transfer coefficient ky k2 rate constants... [Pg.300]

So far, the concept of mass conservation has been applied to large, easily measurable control volumes such as lakes. Mass conservation also can be usefully expressed in an infinitesimal control volume, mathematically considered to be a point. Conservation of mass is expressed in such a volume with the advection—dispersion-reaction equation. This equation states that the rate of change of chemical storage at any point in space, dC/dt, equals the sum of both the rates of chemical input and output by physical means and the rate of net internal production (sources minus sinks). The inputs and outputs that occur by physical means (advection and Fickian transport) are expressed in terms of the fluid velocity (V), the diffusion/dispersion coefficient (D), and the chemical concentration gradient in the fluid (dC/dx). The input or output associated with internal sources or sinks of the chemical is represented by r. In one dimension, the equation for a fixed point is... [Pg.19]

If one defines an apparent diffusion-dispersion coefficient, D, as follows ... [Pg.85]

Solute Diffusion-Dispersion Coefficient. In these studies D was assumed to be constant and not a function of flow velocity. For low flow velocities this assumption seems reasonably valid (23). For the natural rainfall conditons of these studies the flow velocities were generally quite low. In lieu of actual measured D values on the two Maui soils, an estimate of D obtained on a somewhat similar soil on Oahu bv Khan (24) was used in this study. An average value of D = 0.6 cm /hr was measured in the field with a steady water flux of 10 cm/ day. [Pg.373]

In turbulent flow, axial mixing is usually described in terms of turbulent diffusion or dispersion coefficients, from which cumulative residence time distribution functions can be computed. Davies (Turbulence Phenomena, Academic, New York, 1972, p. 93), gives Di = l.OlvRe for the longitudinal dispersion coefficient. Levenspiel (Chemical Reaction Engineering, 2d ed., Wiley, New York, 1972, pp. 253-278) discusses the relations among various residence time distribution functions, and the relation between dispersion coefficient and residence time distribution. [Pg.638]

Continuous stirred tank reactor Dispersion coefficient Effective diffusivity Knudsen diffusivity Residence time distribution Normalized residence time distribution... [Pg.682]

Dispersion In tubes, and particiilarly in packed beds, the flow pattern is disturbed by eddies diose effect is taken into account by a dispersion coefficient in Fick s diffusion law. A PFR has a dispersion coefficient of 0 and a CSTR of oo. Some rough correlations of the Peclet number uL/D in terms of Reynolds and Schmidt numbers are Eqs. (23-47) to (23-49). There is also a relation between the Peclet number and the value of n of the RTD equation, Eq. (7-111). The dispersion model is sometimes said to be an adequate representation of a reaclor with a small deviation from phig ffow, without specifying the magnitude ol small. As a point of superiority to the RTD model, the dispersion model does have the empirical correlations that have been cited and can therefore be used for design purposes within the limits of those correlations. [Pg.705]

The axial dispersion coefficient [cf. Eq. (16-51)] lumps together all mechanisms leading to axial mixing in packed beds. Thus, the axial dispersion coefficient must account not only for moleciilar diffusion and convec tive mixing but also for nonuniformities in the fluid velocity across the packed bed. As such, the axial dispersion coefficient is best determined experimentally for each specific contac tor. [Pg.1512]

Neglecting flow nonuniformities, the contributions of molecular diffusion and turbulent mixing arising from stream sphtting and recombination around the sorbent particles can be considered additive [Langer et al., Int. ]. Heat and Mass Transfer, 21, 751 (1978)] thus, the axial dispersion coefficient is given by ... [Pg.1513]

Dispersion The movement of aggregates of molecules under the influence of a gradient of concentration, temperature, and so on. The effect is represented hy Tick s law with a dispersion coefficient substituted for molecular diffusivity. Thus, rate of transfer = —Dj3C/3p). [Pg.2082]

Dispersion model is based on Fick s diffusion law with an empirical dispersion coefficient substituted for the diffusion coefficient. The material balance is... [Pg.2083]

Dispersion Model An impulse input to a stream flowing through a vessel may spread axially because of a combination of molecular diffusion and eddy currents that together are called dispersion. Mathematically, the process can be represented by Fick s equation with a dispersion coefficient replacing the diffusion coefficient. The dispersion coefficient is associated with a linear dimension L and a linear velocity in the Peclet number, Pe = uL/D. In plug flow, = 0 and Pe oq and in a CSTR, oa and Pe = 0. [Pg.2089]

The dispersion coefficient is orders of magnitude larger than the molecular diffusion coefficient. Some rough correlations of the Peclet number are proposed by Wen (in Petho and Noble, eds.. Residence Time Distribution Theory in Chemical Tngineeiing, Verlag Chemie, 1982), including some for flmdized beds. Those for axial dispersion are ... [Pg.2089]

PasquiU Atmo.spheric Diffusion, Van Nostrand, 1962) recast Eq, (26-60) in terms of the dispersion coefficients and developed a number of useful solutions based on either continuous (plume) or instantaneous (puff) releases, Gifford Nuclear Safety, vol, 2, no, 4, 1961, p, 47) developed a set of correlations for the dispersion coefficients based on available data (see Table 26-29 and Figs, 26-54 to 26-57), The resulting model has become known as the Pasquill-Gifford model. [Pg.2342]

The distribution of tracer molecule residence times in the reactor is the result of molecular diffusion and turbulent mixing if tlie Reynolds number exceeds a critical value. Additionally, a non-uniform velocity profile causes different portions of the tracer to move at different rates, and this results in a spreading of the measured response at the reactor outlet. The dispersion coefficient D (m /sec) represents this result in the tracer cloud. Therefore, a large D indicates a rapid spreading of the tracer curve, a small D indicates slow spreading, and D = 0 means no spreading (hence, plug flow). [Pg.725]

Miyauchi and Vermeulen (M7, M8) have presented a mathematical analysis of the effect upon equipment performance of axial mixing in two-phase continuous flow operations, such as absorption and extraction. Their solutions are based, in one case, upon a simplified diffusion model that assumes a mean axial dispersion coefficient and a mean flow velocity for... [Pg.86]

This result can be useful for design purposes when the diffusivities, partition coefficients, feed-stream conditions, dispersed-system volume, gas-phase holdup (or average residence time), and the size distribution are known. When the size distribution is not known, but the Sauter-mean radius of the population is known, (293) can be approximated by... [Pg.385]

In Table 3 we have listed the results of a basis set and correlation study for the hyperpolarizability dispersion coefficients. In a previous investigation of the basis set effects on the dispersion coefficients for the first hyperpolarizability (3 of ammonia [22] we found quite different trends for the static hyperpolarizability and for the dispersion coefficients. While the static hyperpolarizability was very sensitive to the inclusion of diffuse functions, the dispersion coefficients remained almost unchanged on augmentation of the basis set with additional diffuse functions, but the results obtained with the CC2 and CCSD models, which include dynamic electron correlation, showed large changes with an increase of the... [Pg.134]

The parameter D is known as the axial dispersion coefficient, and the dimensionless number, Pe = uL/D, is the axial Peclet number. It is different than the Peclet number used in Section 9.1. Also, recall that the tube diameter is denoted by df. At high Reynolds numbers, D depends solely on fluctuating velocities in the axial direction. These fluctuating axial velocities cause mixing by a random process that is conceptually similar to molecular diffusion, except that the fluid elements being mixed are much larger than molecules. The same value for D is used for each component in a multicomponent system. [Pg.329]

It can be noted that in general this result predicts that the ratio of the dispersion coefficient to the free-solution diffusion coefficient is different from the ratio of the effective mobility to the free-solution mobility. In the case of gel electrophoresis, where it is expected that the (3 phase is impermeable (i.e., the gel fibers), the medium is isotropic, and the a phase is the space between fibers, the transport coefficients reduce to... [Pg.599]

The standard Rodbard-Ogston-Morris-Killander [326,327] model of electrophoresis which assumes that u alua = D nlDa is obtained only for special circumstances. See also Locke and Trinh [219] for further discussion of this relationship. With low electric fields the effective mobility equals the volume fraction. However, the dispersion coefficient reduces to the effective diffusion coefficient, as determined by Ryan et al. [337], which reduces to the volume fraction at low gel concentration but is not, in general, equal to the porosity for high gel concentrations. If no electrophoresis occurs, i.e., and Mp equal zero, the results reduce to the analysis of Nozad [264]. If the electrophoretic mobility is assumed to be much larger than the diffusion coefficients, the results reduce to that given by Locke and Carbonell [218]. [Pg.599]


See other pages where Diffusion-dispersive coefficient is mentioned: [Pg.120]    [Pg.3]    [Pg.835]    [Pg.80]    [Pg.80]    [Pg.134]    [Pg.23]    [Pg.25]    [Pg.26]    [Pg.368]    [Pg.3]    [Pg.842]    [Pg.141]    [Pg.16]    [Pg.67]    [Pg.120]    [Pg.3]    [Pg.835]    [Pg.80]    [Pg.80]    [Pg.134]    [Pg.23]    [Pg.25]    [Pg.26]    [Pg.368]    [Pg.3]    [Pg.842]    [Pg.141]    [Pg.16]    [Pg.67]    [Pg.68]    [Pg.1513]    [Pg.1567]    [Pg.284]    [Pg.106]    [Pg.107]    [Pg.130]    [Pg.318]    [Pg.396]    [Pg.599]    [Pg.215]   


SEARCH



Dispersion coefficients

Dispersion diffusion

© 2024 chempedia.info