Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Differentiability electric field

It turns out that there is another branch of mathematics, closely related to tire calculus of variations, although historically the two fields grew up somewhat separately, known as optimal control theory (OCT). Although the boundary between these two fields is somewhat blurred, in practice one may view optimal control theory as the application of the calculus of variations to problems with differential equation constraints. OCT is used in chemical, electrical, and aeronautical engineering where the differential equation constraints may be chemical kinetic equations, electrical circuit equations, the Navier-Stokes equations for air flow, or Newton s equations. In our case, the differential equation constraint is the TDSE in the presence of the control, which is the electric field interacting with the dipole (pemianent or transition dipole moment) of the molecule [53, 54, 55 and 56]. From the point of view of control theory, this application presents many new features relative to conventional applications perhaps most interesting mathematically is the admission of a complex state variable and a complex control conceptually, the application of control teclmiques to steer the microscopic equations of motion is both a novel and potentially very important new direction. [Pg.268]

Figure Bl.22.4. Differential IR absorption spectra from a metal-oxide silicon field-effect transistor (MOSFET) as a fiinction of gate voltage (or inversion layer density, n, which is the parameter reported in the figure). Clear peaks are seen in these spectra for the 0-1, 0-2 and 0-3 inter-electric-field subband transitions that develop for charge carriers when confined to a narrow (<100 A) region near the oxide-semiconductor interface. The inset shows a schematic representation of the attenuated total reflection (ATR) arrangement used in these experiments. These data provide an example of the use of ATR IR spectroscopy for the probing of electronic states in semiconductor surfaces [44]-... Figure Bl.22.4. Differential IR absorption spectra from a metal-oxide silicon field-effect transistor (MOSFET) as a fiinction of gate voltage (or inversion layer density, n, which is the parameter reported in the figure). Clear peaks are seen in these spectra for the 0-1, 0-2 and 0-3 inter-electric-field subband transitions that develop for charge carriers when confined to a narrow (<100 A) region near the oxide-semiconductor interface. The inset shows a schematic representation of the attenuated total reflection (ATR) arrangement used in these experiments. These data provide an example of the use of ATR IR spectroscopy for the probing of electronic states in semiconductor surfaces [44]-...
Static electricity hazards and nuisances are typified by the generation of large potentials (0.1-100 kV) by small charging currents (0.01-100 pA) flowing in high resistance circuits (10 -10 Q). This in part differentiates static electricity from other electrical phenomena. For example, stray currents in low resistance circuits are typically of the order 1 A for potential differences of the order 1 volt (A-4-1.3). The electric field at any point in relation to a conductor is proportional to its potential, while magnetic field is proportional to... [Pg.8]

Now, the quadrupole moment can next be calculated by differentiating the potential to get the electric field due to the dipole moment. The reader can now see that an infinite series can be thus generated. The total electric field is simply the sum of all the individual multipole contributions, given by... [Pg.166]

H now differentiate these expressions with respect to some parameter a that (jould be a Cartesian coordinate, the component of an applied electric field, or whatever. We then have... [Pg.239]

The P matrix involves the HF-LCAO coefficients and the hi matrix has elements that consist of the one-electron integrals (kinetic energy and nuclear attraction) over the basis functions Xi - Xn - " h matrix contains two-electron integrals and elements of the P matrix. If we differentiate with respect to parameter a which could be a nuclear coordinate or a component of an applied electric field, then we have to evaluate terms such as... [Pg.240]

Differentiating once with respect to electric field, with respect to dipole field. [Pg.291]

Zone electrophoresis is defined as the differential migration of a molecule having a net charge through a medium under the influence of an electric field (1). This technique was first used in the 1930s, when it was discovered that moving boundary electrophoresis yielded incomplete separations of analytes (2). The separations were incomplete due to Joule heating within the system, which caused convection which was detrimental to the separation. [Pg.197]

When an electric field is imposed perpendicular to the flow, differential interaction between the various solutes and the electric field produce a lateral displacement of individual analyte streams between the two electrodes (Fig. 11-5). Thus, the separations are accomplished in free solution. Individual fractions are collected through an array of closely spaced ports evenly placed across the other end of the chamber. [Pg.293]

Here is the concentration of positive holes at any point in the oxide where the electrical potential is V, and rip(O) is their concentration at the Cu/CujO interface where K = 0. Differentiating equation 1.176, we obtain an equation for the electric field, namely... [Pg.257]

For each EA spectrum, the transmission T was measured with the mechanical chopper in place and the electric field off. The differential transmission AT was subsequently measured without the chopper, with the electric field on, and with the lock-in amplifier set to detect signals at twice the electric-field modulation frequency. The 2/ dependency of the EA signal is due to the quadratic nature of EA in materials with definite parity. AT was then normalized to AT/T, which was free of the spectral response function. To a good approximation [18], the EA signal is related to the imaginary part of the optical third-order susceptibility ... [Pg.114]

To solve this differential equation, we introduce the electric field F ... [Pg.559]

Equation (28) is the set of exact coupled differential equations that must be solved for the nuclear wave functions in the presence of the time-varying electric field. In the spirit of the Born-Oppenheimer approximation, the ENBO approximation assumes that the electronic wave functions can respond immediately to changes in the nuclear geometry and to changes in the electric field and that we can consequently ignore the coupling terms containing... [Pg.60]

When inserting into (4.5), the term ZeR will be multiplied with the elements of the electric field gradient tensor V. Fortunately, the procedure can be restricted to diagonal elements Vu, because V is symmetric and, consequently, a principal axes system exists in which the nondiagonal elements vanish, = 0. The diagonal elements can be determined by using Poisson s differential equation for the electronic potential at point r = 0 with charge density (0), AV = Anp, which yields... [Pg.76]

The tensor of the static first hyperpolarizabilities P is defined as the third derivative of the energy with respect to the electric field components and hence involves one additional field differentiation compared to polarizabilities. Implementations employing analytic derivatives in the Kohn-Sham framework have been described by Colwell et al., 1993, and Lee and Colwell, 1994, for LDA and GGA functionals, respectively. If no analytic derivatives are available, some finite field approximation is used. In these cases the P tensor is preferably computed by numerically differentiating the analytically obtained polarizabilities. In this way only one non-analytical step, susceptible to numerical noise, is involved. Just as for polarizabilities, the individual tensor components are not regularly reported, but rather... [Pg.204]

In applying RAIRS to CO adsorption, the contribution from CO molecules in the gas phase to the absorption spectrum at CO pressures above 10-3 mbar completely obscures the weak absorption signal of surface adsorbed CO. Beitel et al. found it possible to subtract out the gas phase absorption by coding the surface absorption signal by means of the polarization modulation (PM) technique applied to a conventional RAIRS spectrometer, p-polarised light produces a net surface electric field which can interact with adsorbed molecules, whereas both polarization states are equally sensitive to gas phase absorption because gas phase molecules are randomly oriented. By electronic filtering a differential spectrum is computed which does not show contributions from the gas phase and which has much higher surface sensitivity than a conventional RAIRS setup. [Pg.45]

In infinitely dilute solutions (in the standard state) ions do not interact, their electric field corresponds to that of point charges located at very large distances and the solution behaves ideally. As the solution becomes more concentrated, the ions approach one another, whence their fields become deformed. This process is connected with electrical work depending on the interactions of the ions. Differentiation of this quantity with respect to rc, permits calculation of the activity coefficient this differentiation is identical with the differentiation 3GE/5/iI and thus with the term RT In y,. [Pg.40]

Electroneutral substances that are less polar than the solvent and also those that exhibit a tendency to interact chemically with the electrode surface, e.g. substances containing sulphur (thiourea, etc.), are adsorbed on the electrode. During adsorption, solvent molecules in the compact layer are replaced by molecules of the adsorbed substance, called surface-active substance (surfactant).t The effect of adsorption on the individual electrocapillary terms can best be expressed in terms of the difference of these quantities for the original (base) electrolyte and for the same electrolyte in the presence of surfactants. Figure 4.7 schematically depicts this dependence for the interfacial tension, surface electrode charge and differential capacity and also the dependence of the surface excess on the potential. It can be seen that, at sufficiently positive or negative potentials, the surfactant is completely desorbed from the electrode. The strong electric field leads to replacement of the less polar particles of the surface-active substance by polar solvent molecules. The desorption potentials are characterized by sharp peaks on the differential capacity curves. [Pg.235]

Membranes act as a semipermeable barrier between two phases to create a separation by controlling the rate of movement of species across the membrane. The separation can involve two gas (vapor) phases, two liquid phases or a vapor and a liquid phase. The feed mixture is separated into a retentate, which is the part of the feed that does not pass through the membrane, and a permeate, which is that part of the feed that passes through the membrane. The driving force for separation using a membrane is partial pressure in the case of a gas or vapor and concentration in the case of a liquid. Differences in partial pressure and concentration across the membrane are usually created by the imposition of a pressure differential across the membrane. However, driving force for liquid separations can be also created by the use of a solvent on the permeate side of the membrane to create a concentration difference, or an electrical field when the solute is ionic. [Pg.193]

Corona discharge is the simplest type of plasma generator. A feature of the corona discharge, which differentiates it from the other discharges, is that no dielectric is involved. Instead, an electron avalanche is initiated from a sharp metallic surface where the radius of curvature is small. The electric field has to be pulsed in order to prevent the plasma from going into the thermal mode and forming an arc. The electric field in corona reactors is about 50 kV/cm. [Pg.16]

Doi and his coworkers have proposed a semiquantitative theory for the swelling behavior of PAANa gels in electric fields [14]. They have considered the effect of the diffusion of mobile ions due to concentration gradients in the gel. First of all, the changes in ion concentration profiles under an electric field have been calculated using the partial differential Equation 16 (Nernst-Planck equation [21]). [Pg.141]

In order to calculate the theoretical unattached fraction of radon progeny the appropriate differential equations must be developed to describe the net formation of unattached radon progeny. The system may be visualized schematically for RaA as illustrated in Fig. 2. It is assumed that there is no flow into or out of the system or removal by electric fields. The equations which describe the system presented in Fig. 2 are ... [Pg.154]

The concentration of small ions in the atmosphere is determined by 1) the rate of ion-pair production by the cosmic rays and radioactive decay due to natural radioactive substances, 2) recombination with negative ions, 3) attachment to condensation nuclei, 4) precipitation scavenging, and 5) transport processes including convection, advection, eddy diffusion, sedimentation, and ion migration under the influence of electric fields. A detailed differential equation for the concentration of short-lived Rn-222 daughter ions including these terms as well as those pertaining to the rate of formation of the... [Pg.258]


See other pages where Differentiability electric field is mentioned: [Pg.155]    [Pg.155]    [Pg.224]    [Pg.155]    [Pg.155]    [Pg.224]    [Pg.117]    [Pg.2084]    [Pg.56]    [Pg.189]    [Pg.371]    [Pg.1802]    [Pg.9]    [Pg.55]    [Pg.87]    [Pg.361]    [Pg.634]    [Pg.23]    [Pg.66]    [Pg.52]    [Pg.260]    [Pg.20]    [Pg.193]    [Pg.199]    [Pg.255]    [Pg.181]    [Pg.235]    [Pg.134]    [Pg.144]    [Pg.453]   
See also in sourсe #XX -- [ Pg.44 ]

See also in sourсe #XX -- [ Pg.44 ]




SEARCH



Differential field

© 2024 chempedia.info