Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dienes unactivated

Dienes Unactivated alkenes and alkynes are coupled. Linear dienes are formed preferentially. [Pg.105]

Addition of HCN to unsaturated compounds is often the easiest and most economical method of making organonitnles. An early synthesis of acrylonitrile involved the addition of HCN to acetylene. The addition of HCN to aldehydes and ketones is readily accompHshed with simple base catalysis, as is the addition of HCN to activated olefins (Michael addition). However, the addition of HCN to unactivated olefins and the regioselective addition to dienes is best accompHshed with a transition-metal catalyst, as illustrated by DuPont s adiponitrile process (6—9). [Pg.217]

Metal-catalyzed asymmetric hetero Diels-Alder reactions of unactivated dienes with glyoxylates 98PAC1117. [Pg.256]

The major developments of catalytic enantioselective cycloaddition reactions of carbonyl compounds with conjugated dienes have been presented. A variety of chiral catalysts is available for the different types of carbonyl compound. For unactivated aldehydes chiral catalysts such as BINOL-aluminum(III), BINOL-tita-nium(IV), acyloxylborane(III), and tridentate Schiff base chromium(III) complexes can catalyze highly diastereo- and enantioselective cycloaddition reactions. The mechanism of these reactions can be a stepwise pathway via a Mukaiyama aldol intermediate or a concerted mechanism. For a-dicarbonyl compounds, which can coordinate to the chiral catalyst in a bidentate fashion, the chiral BOX-copper(II)... [Pg.182]

Johannsen M., Yao S., Graven A., Jorgensen K. A. Metal-Catalyzed Asymmetric Hetero-Diels-Alder Reactions of Unactivated Dienes With Glyoxylates Pure Appl. Chem. 1998 70 1117-1122... [Pg.308]

Allenes and ketenes react with activated aikenes and alkynes. Ketenes give 1,2 addition, even with conjugated dienes.Ketenes also add to unactivated aikenes if sufficiently long reaction times are used. Allenes and ketenes also add to each other. [Pg.1077]

The reactive compound chlorosulfonyl isocyanate (ClSOaNCO, forms P-lactams even with unactivated alkenes, as well as with imines, allenes, conjugated dienes, and cyclopropenes. With microwave irradiation, alkyl isocyanates also... [Pg.1251]

Treating diene-yne derivatives 50 with ferrate 40 does not lead to the expected ene-allenes, instead the [4 + 2]-cycloaddition products 51 are obtained in moderate yields (eq. 1 in Scheme 11). As metal-catalyzed Diels-Alder-reactions of unactivated aUcynes and dienophiles are assumed to proceed via metaUacyclic intermediates, this supports the mechanism for the Alder-ene-reaction discussed before. [Pg.189]

A tremendous amount of progress has been made over the past decade in the understanding of the catalyzed reductive coupling of unactivated alkenes and alkynes. Both early and late transition metal complexes accomplish the reaction with good yields and with low catalyst loadings. Enynes and dienes can... [Pg.252]

The limitation to electron-rich alkenes in Rh(II)-catalyzed cyclopropanation with phenyldiazomethane leaves untouched the great versatility of zinc halides for this purpose with this, catalyst, efficient and very mild cyclopropanation of 1,3-dienes and unactivated alkenes has been reported 46). [Pg.86]

Conjugated dienes (such as 1,3-cyclohexadiene, cyclopentadiene, 2,4-hexadienoic-sorbic-acid) and polyenes can be selectively hydrogenated to monoenes unactivated alkenes are totally unreactive [20]. Unfortunately, the possibilities for modification of the catalyst by ligand alteration or by the use of additives are very limited [50, 51]. [Pg.1334]

We initially observed an addition reaction of tertiary phosphines to unactivated alkynes. The method was then applied to reactive alkenes, allenes and 1,3-dienes, and finally to unactivated alkenes (Scheme 4). Such a step-up methodology turned out to be effective in this study. [Pg.492]

In general, transition metal-catalyzed addition reactions to 1,3-dienes gave 1,4-adducts via 7t-allyl metal intermediates.23 The ar //-Markovnikov 1,2-addition mode of this reaction is therefore unusual (Scheme 17). It was noted that the configuration of the 3-olefin was retained with either ( )- or (Z)-1,3-dienes. The observation that the 3-olefin was unimportant for this reaction strongly suggests that the method could be applicable to unactivated alkenes. [Pg.500]

From the results of the 1,3-diene addition reaction, the metal-catalyzed reaction of unactivated alkenes was examined, and it was found that the palladium complex effectively catalyzed the a rt-Markovnikov addition of triarylphosphines and bis(trifluoromethanesulfonyl)imide (Tf2NH).24... [Pg.501]

A diastereoselectivity of 85% was obtained in the reaction of 494 with chiral diene 508 (equation 148)307. This reaction showed once again the high reactivity of two unactivated reactants toward cycloaddition in the presence of chromium(O). Cycloadduct 509 was considered to be a model precursor for the convergent synthesis of the unusual sesterpene cerorubenol (510). [Pg.447]

Rhodium catalysis has played a critical role in the development of this type of reaction. The rhodium-mediated [4 + 2] carbocyclization between dienes and unactivated olefins or alkynes is a notable early example of this concept [2]. Further investigations demonstrated the extension of this methodology to the reaction between a diene and an allene [3]. Expansion of the scope of this strategy, to both the intra- and intermolecular [5-1-2] homologs of the Diels-Alder reaction, was accomplished with a vinylcyclopropane and either an alkyne or an olefin to afford the carbocyclization adducts (Scheme 11.1) [4, 5]. [Pg.215]

Recent advances in the rhodium-catalyzed [4-1-2] reactions have led to the development of the first highly regioselective intermolecular cyclization, providing access to new classes of carbocycles with both activated and unactivated substrates. The chemo- and stereoselective carbocyclizations of tethered diene-allene derivatives afford new classes of 5,6- and 6,6-bicyclic systems. Additionally, examination of a wide range of factors that influence both diastereo- and enantioselectivity has provided a significant advance in the understanding of catalyst requirements across these systems. [Pg.260]

Two recent publications feature metal vinylidenes functioning as 1,3-dipole equivalents, as in the Cu-catalyzed Huisgen cyclization (Section 9.4.5). Fiirstner and coworkers described intramolecular Diels-Alder reactions of unactivated die-nynes catalyzed via a proposed [4+3]-diene/copper vinylidene cycloaddition [59]. [Pg.310]

Furo[2,3- ]pyridines are generated in a cyano [4-1-2] reaction that uses tungsten alkynols and aldehydes which cyclize to 1,3-dienes prior to reaction with nitriles (Scheme 9) <1998JA4520>. The reaction, which is activated by photolysis or with Me3N0-H20, works with unactivated nitriles in both intramolecular and intermolecular reactions to give moderate to good yields of product. [Pg.288]

The reactive compound chlorosulfonyl isocyanate796 CIS02NC0 forms 3-lactams even with unactivated alkenes,797 as well as with allenes,798 conjugated dienes,799 and cyclopropenes.8 l, OS V, 673 65, 135, 140. [Pg.978]

This and other similar cycloadditions, however, when unactivated hydrocarbons without heteroatom substituents participate in Diels-Alder reaction, are rarely efficient, requiring forcing conditions (high temperature, high pressure, prolonged reaction time) and giving the addition product in low yield. Diels-Alder reactions work well if electron-poor dienophiles (a, p-un saturated carbonyl compounds, esters, nitriles, nitro compounds, etc.) react with electron-rich dienes. For example, compared to the reaction in Eq. (6.86), 1,3-butadiene reacts with acrolein at 100°C to give formy 1-3-cyclohexene in 100% yield. [Pg.332]

The abovementioned rate acceleration and selectivity enhancement brought about by catalysts are particularly marked when unactivated dienes and dienophiles are involved. Two molecules of 1,3-butadiene can react in a Diels-Alder reaction, one acting as diene and the other as a dienophile to produce 4-vinylcyclohexene (in 0.1% yield at 250°C in the absence of a catalyst). Cs+, Cu,+ and trivalent transition-metal exchanged montmorillonites534 as well as large-pore sodium zeolites (Na ZSM-20, NaY) and carbon molecular sieves,535 result in 20-35% yields with 95% selectivity. Large rate enhancement was observed when 1,3-cyclohexadiene underwent a similar cycloaddition536 in the presence of K10 montmorillonite doped with Fe3+ ... [Pg.334]

As was mentioned, cycloaddition of unactivated hydrocarbons, namely, that of cyclopentadiene, has practical significance. 5-Vinyl-2-norbomene is produced by the cycloaddition of cyclopentadiene and 1,3-butadiene546,547 [Eq. (6.96)] under conditions where side reactions (polymerization, formation of tetrahydroindene) are minimal. The product is then isomerized to 5-ethylidene-2-norbomene, which is a widely used comonomer in the manufacture of an EPDM (ethylene-propylene-diene monomer) copolymer (see Section 13.2.6). The reaction of cyclopentadiene (or dicyclopentadiene, its precursor) with ethylene leads to norbomene548,549 [Eq. (6.97)] 550... [Pg.335]

As discussed in Section 6.9 1, 3-dienes and dienophiles in which multiple bonds are not activated by electron-withdrawing or electron-releasing substituents fail to undergo cycloaddition except under the most severe conditions. Particular difficulty is encountered in the cycloaddition of two unactivated species since homodimerization can be a competitive and dominant reaction pathway. The use of transition-metal catalysts, however, has proved to be a valuable solution. Complexation of unactivated substrates to such catalysts promotes both inter- and intramolecular cycloadditions. Consequently, the cycloaddition of such unactivated compounds, that is, simple unsubstituted dienes and alkenes, catalyzed by transition metals is a major, important area of study.655 In addition, theoretical problems of the transformation have frequently been addressed in the more recent literature. [Pg.347]

In the previous sections, double silylation was facilitated by using more reactive substrates such as alkynes and dienes with activated and strained disilanes. However, the use of palladium complexes with certain ligands allows successful reaction with the unactivated disilanes. [Pg.214]

Addition of HCN lo nnsat lira ted compounds is often the easiest and most economical method of making organonitnles, However, the addition of HCN to unactivated olefins and the regioselective addition to dienes is best accomplished with a transition metal catalyst. [Pg.1079]

Palladium acetate triarylphosphine complexes catalyze the addition of vinylic groups from vinylic halides to olefinic compounds in the presence of amines. Conjugated dienes are major products from 0,/3-unsaturated acids, esters, or nitriles while unactivated olefinic compounds react best in the presence of secondary amines where allylic amines are major products. The reactions are usually regio- and stereospecific. The synthetic utility of the reaction is illustrated with a wide variety of examples. [Pg.214]


See other pages where Dienes unactivated is mentioned: [Pg.151]    [Pg.163]    [Pg.81]    [Pg.84]    [Pg.252]    [Pg.644]    [Pg.490]    [Pg.501]    [Pg.215]    [Pg.243]    [Pg.209]    [Pg.28]    [Pg.552]    [Pg.865]    [Pg.345]    [Pg.233]    [Pg.295]    [Pg.3]   


SEARCH



© 2024 chempedia.info