Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dienes ethers

In a process related to GTP, aldehydes initiate the polymerization of silyl vinyl ethers and silyl diene ethers. Here the silyl group is present in the monomer and transfers to the aldehyde ended chains regenerating aldehyde ends [17] (Scheme 8). A Lewis acid catalyst is required. terf-Butyldimethylsilyl works best as a transfer group for vinyl ether while trimethylsilyl is suitable for diene ethers [18]. Even though aldol GTP provides a route to polyvinyl alcohol segments in the subsequent block polymer synthesis, the projected cost of the monomers discouraged further research aimed at commercialization. [Pg.7]

Cyclic diene ether 93 underwent oxidative acetalization to produce corresponding 3-substituted acetals 100 and 101 (Scheme 17) <1995TL8263>. Further Lewis acid-catalyzed reduction with triethylsilane afforded corresponding 3-bromo- and 3-hydroxy-oxonenes (102 R = Br (68%) 103 R = OH (49%), respectively) together with 1 1 diastereomeric mixture of acyclic methyl ethers 104 (R = Br (18%) R = OH (13%)). [Pg.569]

Cyclic diene ether 93 was prepared in high yield starting from lactone 163 through the corresponding enol triflate (Equation 8) C1995TL8263, 1997CL665>. [Pg.578]

Zrrconocene, ZrCp2, generated in situ from zirconocene derivatives, mediates diverse ring-closures. Thus treatment of 2,4,4-trimethyl-l,6-heptadiene with butyllithium and Bu2ZrCp2 yields the zirconium complex 218, which gives 1,1,3,3,5-pentamethylcyclopentane on aqueous work-up (equation 111). The reaction of 1,7-octadiene with butyknagnesium chloride and a catalytic amount of zirconocene dichloride, followed by water, gives frons-l,2-dimethylcyclohexane (219) in excellent yield (equation 113) similarly, the diene ether 220 affords the cyclopentane derivative 221 (equation 113). ... [Pg.539]

The ting-closing metathesis of functionalized linear dienes, diene-ethers, diene-amines, etc., leads to a variety of cyclic alkenes and heterocycles [16] (eq. (8)). [Pg.332]

ADMET polymerization of dienes containing functional groups has been explored to some extent. It appears that diene ethers such as 36 are tolerant of Schrock s W-alkylidene catalysts when undergoing ADMET polymerization, but Grubbs first-generation catalyst is required to successfully polymerize diene alcohol 37,61 because the OH group is too Lewis basic for catalysis by W- and Mo-alkylidenes.62... [Pg.486]

A fragmentation reaction occurred when the tosylate (101) of 4jS,5-epoxy-5)3-cholestan-3jS-ol was treated with either collidine or lithium carbonate-dimethyl-formamide, giving the diene-ether (102) among other products. Side-chain... [Pg.288]

Some simple cyclic diene ethers such as the benzopyran derivative 58 (Eq. 51) and hexahydronaphthalene 59 (Eq. 52) react normally the majority of cyclic dienes used as substrates are steroids. The example given (60 Eq. 53f is one of the few with a recorded yield, but it and other examples in Table VI show that a wide range of substituents can be tolerated. [Pg.232]

Table 8.5 Metathesis reactions of diene ethers and formals... Table 8.5 Metathesis reactions of diene ethers and formals...
Polythioethers were also prepared with a terpene-based thiol and a long-chain diene ether [40]. 10-undecenoate was used as a platform for preparation of a renewable diene (Scheme 6.14a). A first dithiol (Scheme 6.14b) was synthesised from this diene, and a second from limonene (Scheme 6.14c). [Pg.124]

Hate 3. All glassware used for the work-up and distillation must be rinsed with a dilute solution of triethylamine in diethyl ether or acetone in order to be sure that traces of acids on the glass walls have been neutralized. Allenic sulfides with the structure C=C=C(SR)-CH- isomerize under the influence of acids to give conjugated dienes, C=C-C(SR)=C. [Pg.47]

The enone 807 is converted into the dienol triflatc 808 and then the conjugated diene 809 by the hydrogenolysis with tributylammonium for-mate[689,690]. Naphthol can be converted into naphthalene by the hydrogenolysis of its triflate 810[691-693] or sulfonates using dppp or dppf as a ligand[694]. Aryl tetrazoyl ether 811 is cleaved with formic acid using Pd on carbon as a catalyst[695]. [Pg.248]

Critical micelle concentration (Section 19 5) Concentration above which substances such as salts of fatty acids aggre gate to form micelles in aqueous solution Crown ether (Section 16 4) A cyclic polyether that via lon-dipole attractive forces forms stable complexes with metal 10ns Such complexes along with their accompany mg anion are soluble in nonpolar solvents C terminus (Section 27 7) The amino acid at the end of a pep tide or protein chain that has its carboxyl group intact—that IS in which the carboxyl group is not part of a peptide bond Cumulated diene (Section 10 5) Diene of the type C=C=C in which a single carbon atom participates in double bonds with two others... [Pg.1280]

Alkylfurans, halofurans, alkoxyfurans, furfuryl ester and ethers, and furfural diacetate [613-75-2] behave similarly. Furans containing electron withdrawing constituents, for example, furfural, 2-furoic acid, and nitrofurans, fail as dienes even with very strong dienophiles. [Pg.74]

Acrolein as Diene. An industrially useful reaction in which acrolein participates as the diene is that with methyl vinyl ether. The product, methoxydihydropyran, is an intermediate in the synthesis of glutaraldehyde [111 -30-8]. [Pg.127]

The addition proceeds in three discrete steps and the intermediates can be isolated. Simple alkenes are less reactive than alkynes and do not undergo the addition to aHylic boranes, but electron-rich alkyl vinyl ethers react at moderate temperatures to give 1,4-dienes or dienyl alcohols (440). [Pg.321]

Heteroatom functionalized terpene resins are also utilized in hot melt adhesive and ink appHcations. Diels-Alder reaction of terpenic dienes or trienes with acrylates, methacrylates, or other a, P-unsaturated esters of polyhydric alcohols has been shown to yield resins with superior pressure sensitive adhesive properties relative to petroleum and unmodified polyterpene resins (107). Limonene—phenol resins, produced by the BF etherate-catalyzed condensation of 1.4—2.0 moles of limonene with 1.0 mole of phenol have been shown to impart improved tack, elongation, and tensile strength to ethylene—vinyl acetate and ethylene—methyl acrylate-based hot melt adhesive systems (108). Terpene polyol ethers have been shown to be particularly effective tackifiers in pressure sensitive adhesive appHcations (109). [Pg.357]

Anionic polymerization of vinyl monomers can be effected with a variety of organometaUic compounds alkyllithium compounds are the most useful class (1,33—35). A variety of simple alkyllithium compounds are available commercially. Most simple alkyllithium compounds are soluble in hydrocarbon solvents such as hexane and cyclohexane and they can be prepared by reaction of the corresponding alkyl chlorides with lithium metal. Methyllithium [917-54-4] and phenyllithium [591-51-5] are available in diethyl ether and cyclohexane—ether solutions, respectively, because they are not soluble in hydrocarbon solvents vinyllithium [917-57-7] and allyllithium [3052-45-7] are also insoluble in hydrocarbon solutions and can only be prepared in ether solutions (38,39). Hydrocarbon-soluble alkyllithium initiators are used directiy to initiate polymerization of styrene and diene monomers quantitatively one unique aspect of hthium-based initiators in hydrocarbon solution is that elastomeric polydienes with high 1,4-microstmcture are obtained (1,24,33—37). Certain alkyllithium compounds can be purified by recrystallization (ethyllithium), sublimation (ethyllithium, /-butyUithium [594-19-4] isopropyllithium [2417-93-8] or distillation (j -butyUithium) (40,41). Unfortunately, / -butyUithium is noncrystaUine and too high boiling to be purified by distiUation (38). Since methyllithium and phenyllithium are crystalline soUds which are insoluble in hydrocarbon solution, they can be precipitated into these solutions and then redissolved in appropriate polar solvents (42,43). OrganometaUic compounds of other alkaU metals are insoluble in hydrocarbon solution and possess negligible vapor pressures as expected for salt-like compounds. [Pg.238]

When using a cation source in conjunction with a Friedel-Crafts acid the concentration of growing centers is most often difficult to measure and remains unknown. By the use of stable carbocation salts (for instance trityl and tropyhum hexachloroantimonate) the uncertainty of the concentration of initiating cations is eliminated. Due to the highly reproducible rates, stable carbocation salts have been used in kinetic studies. Their use, however, is limited to cationicaHy fairly reactive monomers (eg, A/-vinylcarbazole, -methoxystyrene, alkyl vinyl ethers) since they are too stable and therefore ineffective initiators of less reactive monomers, such as isobutylene, styrene, and dienes. [Pg.245]

Endo adducts are usually favored by iateractions between the double bonds of the diene and the carbonyl groups of the dienophile. As was mentioned ia the section on alkylation, the reaction of pyrrole compounds and maleic anhydride results ia a substitution at the 2-position of the pyrrole ring (34,44). Thiophene [110-02-1] forms a cycloaddition adduct with maleic anhydride but only under severe pressures and around 100°C (45). Addition of electron-withdrawiag substituents about the double bond of maleic anhydride increases rates of cycloaddition. Both a-(carbomethoxy)maleic anhydride [69327-00-0] and a-(phenylsulfonyl) maleic anhydride [120789-76-6] react with 1,3-dienes, styrenes, and vinyl ethers much faster than tetracyanoethylene [670-54-2] (46). [Pg.450]

Apparently the alkoxy radical, R O , abstracts a hydrogen from the substrate, H, and the resulting radical, R" , is oxidized by Cu " (one-electron transfer) to form a carbonium ion that reacts with the carboxylate ion, RCO - The overall process is a chain reaction in which copper ion cycles between + 1 and +2 oxidation states. Suitable substrates include olefins, alcohols, mercaptans, ethers, dienes, sulfides, amines, amides, and various active methylene compounds (44). This reaction can also be used with tert-huty peroxycarbamates to introduce carbamoyloxy groups to these substrates (243). [Pg.131]

In solution-based polymerisation, use of the initiating anionic species allows control over the trans /cis microstmcture of the diene portion of the copolymer. In solution SBR, the alkyUithium catalyst allows the 1,2 content to be changed with certain modifying agents such as ethers or amines. The use of anionic initiators to control the molecular weight, molecular weight distribution, and the microstmcture of the copolymer has been reviewed (15). [Pg.495]

Related to the crown ethers are compounds, such as hexamethyl-[14]-4,ll-diene (6), which differ by the replacement of one or more of the oxygen atoms by other kinds of donor atoms, particularly N or S. MacrocycHc amine and thioether compounds have been synthesized. Compounds having more than one kind of heteroatom in the ring are called mixed-donor macrocycles. The naturally occurring metaboUtes nonactin [6833-84-7] and monactin [7182-54-9] have both ether and ester groups incorporated in the macrocyclic stmcture. [Pg.382]

In the case of vinylfurans and vinylpyrroles there is the possibility of cycloaddition involving either the cyclic diene system or the diene system including the double bond. 2-Vinylfuran reacts in high yield with maleic anhydride in ether at room temperature to form the adduct involving the exocyclic double bond. Similarly, 2- and 3-vinylpyrroles react with 7T-electron-deficient alkenes and alkynes under relatively mild conditions to give the corresponding tetrahydro- and dihydro-indoles (Scheme 51) (80JOC4515). [Pg.66]

Bicyclo[2.2.1]hepta-2,5-diene rhodium (I) chloride dimer (norbornadiene rhodium chloride complex dimer) [12257-42-0] M 462, m 240°(dec). Recrystd from hot CHCl3-pet ether as fine crystals soluble in CHCI3 and C H but almost insoluble in Et20 or pet ether. [7 Chem Soc 3178 1959.]... [Pg.400]


See other pages where Dienes ethers is mentioned: [Pg.539]    [Pg.53]    [Pg.153]    [Pg.539]    [Pg.53]    [Pg.153]    [Pg.87]    [Pg.357]    [Pg.328]    [Pg.357]    [Pg.239]    [Pg.240]    [Pg.227]    [Pg.103]    [Pg.254]    [Pg.527]    [Pg.157]    [Pg.433]    [Pg.434]    [Pg.438]    [Pg.281]    [Pg.154]    [Pg.262]    [Pg.179]    [Pg.224]    [Pg.108]   


SEARCH



Diene cyclic enol ether

Photoreaction of tropolone alkyl ether, cycloocta-2,4-dien-l-one and pyridone

Silyl enol ethers, reactions with dienes

© 2024 chempedia.info