Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dienes catalysts, cobalt complexes

Chiral salen chromium and cobalt complexes have been shown by Jacobsen et al. to catalyze an enantioselective cycloaddition reaction of carbonyl compounds with dienes [22]. The cycloaddition reaction of different aldehydes 1 containing aromatic, aliphatic, and conjugated substituents with Danishefsky s diene 2a catalyzed by the chiral salen-chromium(III) complexes 14a,b proceeds in up to 98% yield and with moderate to high ee (Scheme 4.14). It was found that the presence of oven-dried powdered 4 A molecular sieves led to increased yield and enantioselectivity. The lowest ee (62% ee, catalyst 14b) was obtained for hexanal and the highest (93% ee, catalyst 14a) was obtained for cyclohexyl aldehyde. The mechanism of the cycloaddition reaction was investigated in terms of a traditional cycloaddition, or formation of the cycloaddition product via a Mukaiyama aldol-reaction path. In the presence of the chiral salen-chromium(III) catalyst system NMR spectroscopy of the crude reaction mixture of the reaction of benzaldehyde with Danishefsky s diene revealed the exclusive presence of the cycloaddition-pathway product. The Mukaiyama aldol condensation product was prepared independently and subjected to the conditions of the chiral salen-chromium(III)-catalyzed reactions. No detectable cycloaddition product could be observed. These results point towards a [2-i-4]-cydoaddition mechanism. [Pg.162]

In a more recent and improved approach to cyclopropa-radicicol (228) [ 110], also outlined in Scheme 48, the synthesis was achieved via ynolide 231 which was transformed to the stable cobalt complex 232. RCM of 232 mediated by catalyst C led to cyclization product 233 as a 2 1 mixture of isomers in 57% yield. Oxidative removal of cobalt from this mixture followed by cycloaddition of the resulting cycloalkyne 234 with the cyclic diene 235 led to the benzofused macrolactone 236, which was converted to cyclopropa-radicicol (228). [Pg.314]

For a decade or so [CoH(CN)5] was another acclaimed catalyst for the selective hydrogenation of dienes to monoenes [2] and due to the exclusive solubility of this cobalt complex in water the studies were made either in biphasic systems or in homogeneous aqueous solutions using water soluble substrates, such as salts of sorbic add (2,4-hexadienoic acid). In the late nineteen-sixties olefin-metal and alkyl-metal complexes were observed in hydrogenation and hydration reactions of olefins and acetylenes with simple Rii(III)- and Ru(II)-chloride salts in aqueous hydrochloric acid [3,4]. No significance, however, was attributed to the water-solubility of these catalysts, and a new impetus had to come to trigger research specifically into water soluble organometallic catalysts. [Pg.10]

The hydroformylation of conjugated dienes with unmodified cobalt catalysts is slow, since the insertion reaction of the diene generates an tj3-cobalt complex by hydride addition at a terminal carbon (equation 10).5 The stable -cobalt complex does not undergo facile CO insertion. Low yields of a mixture of n- and iso-valeraldehyde are obtained. The use of phosphine-modified rhodium catalysts gives a complex mixture of Cs monoaldehydes (58%) and C6 dialdehydes (42%). A mixture of mono- and di-aldehydes are also obtained from 1,3- and 1,4-cyclohexadienes with a modified rhodium catalyst (equation ll).29 The 3-cyclohexenecarbaldehyde, an intermediate in the hydrocarbonylation of both 1,3- and 1,4-cyclo-hexadiene, is converted in 73% yield, to the same mixture of dialdehydes (cis.trans = 35 65) as is produced from either diene. [Pg.922]

More recently, Pfaltz has reported high enantioselectivities for the cyclopropanation of monosubstituted alkenes and dienes with diazo carbonyl compounds using chiral (semicorrinato)copper complexes (P-Cu) (23-25), and Evans, Masamune, and Pfaltz subsequently discovered exceptional enantioselectivities in intermolecular cyclopropanation reactions with the analogous bis-oxazoline copper complexes (26-28). With the exception of the chiral (camphorquinone dioximato)cobalt(II) catalysts (N-Co) reported by Nakamura and coworkers (29,30), whose reactivities and selectivities differ considerably from copper catalysts, chiral complexes of metals other than copper have not exhibited similar promise for high optical yields in cyclopropanation reactions (37). [Pg.46]

Many of the complexes discussed in the previous sections are catalysts for alkyne oligomerization. In fact, alkyne dimerization and trimerization (see Cyclodimerization -tri-merization Reactions) at a cobalt center is recognized as one of the most synthetically useful catalytic reactions mediated by a homogeneous transition metal complex. The cobalt complexes most useful and extensively studied are CpCoL2, where L is CO, alkene, diene, or phosphine. The complex types... [Pg.864]

The use of zero-valent transition metal (mainly nickel and cobalt) complexes as promoters of the homo-Diels-Alder reaction has been an important development. These catalysts allow 1,4-dienes to react with nonactivated alkenes and alkynes, broadening the scope of the homo-... [Pg.981]

Cobalt complexes with 14-membered tetraazamacrocyclic ligands have been investigated and successfully employed as catalysts for electrochemical and photochemical reduction of C02 and H20.230 One such complex low-spin [Co(I)HMD] + (HMD = 5,7,7,12,14,14,-hexamethyl-l,4,8,ll-tetraazacyclotetradeca-4,ll-diene (hex-amethylcyclam)) reacts with C02 in H20 and in CH3CN to form the N-rac-[CoHMD(C02)]+ species which is sufficiently stable in dry CH3CN and in a C02... [Pg.50]

The work of Nakamura (Tatsuno et al., 1974 Nakamura et al., 1978a, 1978b) is not only interesting because he used a cobalt complex (8.161) as cyclopropanation catalyst, but also because of enantiomeric selectivity. The latter was high when using dienes and styrene as substrate (8-73), but low with simple alkenes. [Pg.376]

Catalytic and photochemical processes using mixed metal carbonyls are also represented. Tin-cobalt carbonyl compounds have been used as catalysts for ring-opening of oxiranes by secondary and tertiary alcohols 121 and the photochemical reactions of Pt2M4(CO)jg (M=Os, Ru) with cycloocta-1,5-diene under UV irradiation 122,123,124 jjgve been reported. A new rhenium-cobalt complex has been characterised 126 and Pt(cod)2 has been used to prepare new complexes via its reaction with 0 3(CO) jQ(FlCMe)2 26. [Pg.140]

A mild aerobic palladium-catalyzed 1,4-diacetoxylation of conjugated dienes has been developed and is based on a multistep electron transfer46. The hydroquinone produced in each cycle of the palladium-catalyzed oxidation is reoxidized by air or molecular oxygen. The latter reoxidation requires a metal macrocycle as catalyst. In the aerobic process there are no side products formed except water, and the stoichiometry of the reaction is given in equation 19. Thus 1,3-cyclohexadiene is oxidized by molecular oxygen to diacetate 39 with the aid of the triple catalytic system Pd(II)—BQ—MLm where MLm is a metal macrocyclic complex such as cobalt tetraphenylporphyrin (Co(TPP)), cobalt salophen (Co(Salophen) or iron phthalocyanine (Fe(Pc)). The principle of this biomimetic aerobic oxidation is outlined in Scheme 8. [Pg.667]

A hydrosilylation/cyclization process forming a vinylsilane product need not begin with a diyne, and other unsaturation has been examined in a similar reaction. Alkynyl olefins and dienes have been employed,97 and since unlike diynes, enyne substrates generally produce a chiral center, these substrates have recently proved amenable to asymmetric synthesis (Scheme 27). The BINAP-based catalyst employed in the diyne work did not function in enyne systems, but the close relative 6,6 -dimethylbiphenyl-2,2 -diyl-bis(diphenylphosphine) (BIPHEMP) afforded modest yields of enantio-enriched methylene cyclopentane products.104 Other reported catalysts for silylative cyclization include cationic palladium complexes.105 10511 A report has also appeared employing cobalt-rhodium nanoparticles for a similar reaction to produce racemic product.46... [Pg.809]

The transition group compound (catalyst) and the metal alkyl compound (activator) form an organometallic complex through alkylation of the transition metal by the activator which is the active center of polymerization (Cat). With these catalysts not only can ethylene be polymerized but also a-olefins (propylene, 1-butylene, styrene) and dienes. In these cases the polymerization can be regio- and stereoselective so that tactic polymers are obtained. The possibilities of combination between catalyst and activator are limited because the catalytic systems are specific to a certain substrate. This means that a given combination is mostly useful only for a certain monomer. Thus conjugated dienes can be polymerized by catalyst systems containing cobalt or nickel, whereas those systems... [Pg.216]

Some of these derivatives are useful catalysts for the codimerization of dienes with acrylic esters (82, 138, 140, 143). The reaction between cobalt vapor and butadiene is complex, and the nature of the products remains to be elucidated. However, there is a report of the synthesis of the yellow complex HCo(C4H6)2 from the condensation of a mixture of C4H and Me3CH with cobalt vapor (104, 110). [Pg.69]

Reduction of a cobalt(II) halide in presence of 2,2 -bipyridyl with zinc in THF-ethanol leads to cobalt(I)-bipyridyl complexes which hydrogenate butadiene to cis-2-butene at 25 °C and normal pressure of hydrogen. For different halides the rate decreases in the order I>Br>Cl. 1,10-Phenanthroline complexes were also active.64 Here again, the catalyst does not tolerate an excess of diene. The proposed mechanism for the hydrogenation is given in Scheme 4. [Pg.237]


See other pages where Dienes catalysts, cobalt complexes is mentioned: [Pg.121]    [Pg.34]    [Pg.694]    [Pg.213]    [Pg.454]    [Pg.248]    [Pg.209]    [Pg.57]    [Pg.285]    [Pg.231]    [Pg.454]    [Pg.371]    [Pg.1117]    [Pg.694]    [Pg.694]    [Pg.149]    [Pg.240]    [Pg.2358]    [Pg.1086]    [Pg.1201]    [Pg.231]    [Pg.294]    [Pg.230]    [Pg.1037]    [Pg.363]    [Pg.919]    [Pg.9]    [Pg.369]    [Pg.267]    [Pg.291]    [Pg.184]    [Pg.230]    [Pg.378]    [Pg.218]   
See also in sourсe #XX -- [ Pg.237 ]

See also in sourсe #XX -- [ Pg.237 ]

See also in sourсe #XX -- [ Pg.6 , Pg.237 ]




SEARCH



1.3- Dienes complexes

Cobalt catalyst

Cobalt catalysts catalyst

Cobalt complex catalysts

Cobalt diene

Complex diene

© 2024 chempedia.info