Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diels-Alder reactions couplings

The Diels-Alder reaction couples the ends of two separate tt systems. Can rings be formed by the linkage of the termini of a single conjugated di-, tri-, or polyene Yes, and this section will describe the conditions under which such ring closures (and their reverse), called electrocyclic reactions, take place. Cycloadditions and electrocyclic reactions belong to a class of transformations called pericyclic (peri, Greek, around), because they exhibit transition states with a cyclic array of nuclei and electrons. [Pg.608]

Apart from the thoroughly studied aqueous Diels-Alder reaction, a limited number of other transformations have been reported to benefit considerably from the use of water. These include the aldol condensation , the benzoin condensation , the Baylis-Hillman reaction (tertiary-amine catalysed coupling of aldehydes with acrylic acid derivatives) and pericyclic reactions like the 1,3-dipolar cycloaddition and the Qaisen rearrangement (see below). These reactions have one thing in common a negative volume of activation. This observation has tempted many authors to propose hydrophobic effects as primary cause of ftie observed rate enhancements. [Pg.27]

Under different conditions [PdfOAcj2, K2CO3, flu4NBr, NMP], the 1 3 coupling product 86 with 4-aryl-9,10-dihydrophenanthrene units was obtained. The product 86 was transformed into a variety of polycyclic aromatic compounds such as 87 and 88[83], The polycyclic heteroarene-annulated cyclopen-tadicnc 90 is prepared by the coupling of 3-iodopyridine and dicyclopentadiene (89), followed by retro-Diels Alder reaction on thermolysis[84]. [Pg.141]

To date a number of reactions have been carried out in ionic liquids [for examples, see Dell Anna et al. J Chem Soc, Chem Commun 434 2002 Nara, Harjani and Salunkhe Tetrahedron Lett 43 1127 2002 Semeril et al. J Chem Soc Chem Commun 146 2002 Buijsman, van Vuuren and Sterrenburg Org Lett 3 3785 2007]. These include Diels-Alder reactions, transition-metal mediated catalysis, e.g. Heck and Suzuki coupling reactions, and olefin metathesis reactions. An example of ionic liquid acceleration of reactions carried out on solid phase is given by Revell and Ganesan [Org Lett 4 3071 2002]. [Pg.77]

Many organic chemical transformations have been carried out in ionic liquids hydrogenation [4, 5], oxidation [6], epoxidation [7], and hydroformylation [8] reactions, for example. In addition to these processes, numerous synthetic routes involve a carbon-carbon (C-C) bond-forming step. As a result, many C-C bondforming procedures have been studied in ambient-temperature ionic liquids. Among those reported are the Friedel-Crafts acylation [9] and allcylation [10] reactions, allylation reactions [11, 12], the Diels-Alder reaction [13], the Heck reaction [14], and the Suzuld [15] and Trost-Tsuji coupling [16] reactions. [Pg.319]

Scheme 22. Schreiber s approach to dynemicin A system 86 by a tandem Sonogashira coupling/Diels-Alder reaction. Scheme 22. Schreiber s approach to dynemicin A system 86 by a tandem Sonogashira coupling/Diels-Alder reaction.
A cross-coupling reactions of terminal alkynes with terminal alkenes 32 supported on Merrifield-resin (Scheme 4.5) in the presence of Grubs ruthenium initiator [Cl2(PCy3)2Ru = CHPh] provided efficient access to supported 1,3-dienes 33 which were transformed into octahydrobenzazepinones 34 via MeAlCl2 catalyzed Diels-Alder reaction [27]. [Pg.152]

The coupling photolysis Lewis acid is also sometimes effective in promoting a Diels-Alder reaction. Thus, cationic (R,S)-(ON)Ru-salen homochiral complex 71 catalyzed the Diels-Alder reaction between Danishefsky s diene and benzaldehyde when the reagents were exposed to direct sunlight through a window or to incandescent light in t-butyl methyl ether (TBME)[49] (Equation 4.8). The reaction in the dark was very slow and only 3 % ee was detected. [Pg.167]

Today microemulsions are used in catalysis, preparation of submicron particles, solar energy conversion, extraction of minerals and protein, detergency and lubrication [58]. Most studies in the field of basic research have dealt with the physical chemistry of the systems themselves and only recently have microemulsions been used as a reaction medium in organic synthesis. The reactions investigated to date include nucleophilic substitution and additions [59], oxidations [59-61], alkylation [62], synthesis of trialkylamines [63], coupling of aryl halides [64], nitration of phenols [65], photoamidation of fluoroolefins [66] and some Diels-Alder reactions. [Pg.281]

For the microwave-assisted experiments, both solvents were replaced by 1,2-dichlorobenzene, as it couples very effectively with microwaves (loss-tangent (tan 5) at 20 °C 1,2-dichlorobenzene 0.280 as compared to 0.101 for chlorobenzene). Diels-Alder reactions of 3-methoxy or 3-phenyl pyrazinones with DMAD were performed at a pre-selected maximum temperature of 200 °C, whereas the intramolecular reaction of alkyne tethered pyrazinone required a higher temperature (220 °C). The yields obtained under microwave irradiation are comparable with those obtained under conventional conditions, while for the dihydrofuropyridinone the yield was improved from... [Pg.296]

Antioxidant capacities of common individual curcuminoids were determined in vitro by phosphomolybdenum and linoleic acid peroxidation methods. Antioxidant capacities expressed as ascorbic acid equivalents (pmol/g) were 3099 for curcumin, 2833 for demethoxycurcumin, and 2677 for bisdemethoxycurcumin at concentrations of 50 ppm. The same order of antioxidant activity (curcumin > demethoxycurcumin > bisdemethoxycurcumin) was observed when compared with BHT (buty-lated hydroxyl toluene) in linoleic peroxidation tests. The antioxidant activity of curcumin in the presence of ethyl linoleate was demonstrated and six reaction products were identified and structurally characterized. The mechanism proposed for this activity consisted of an oxidative coupling reaction at the 3 position of the curcumin with the lipid and a subsequent intramolecular Diels-Alder reaction. ... [Pg.333]

Domino transition metal-catalyzed processes can also start with a cross-coupling reaction most often, Suzuki, Stille and Sonogashira reactions are used in this context They can be combined with another Pd-catalyzed transformation, and a number of examples have also been reported where a pericydic reaction, usually a Diels-Alder reaction, follows. An interesting combination is also a Pd-catalyzed borina-tion followed by a Suzuki reaction. [Pg.386]

A NiCl2/CrCl2-mediated domino process of the chiral aldehyde 6/4-81 iodotriene 6/4-82 was used for the synthesis of (-)-ircinianin (6/4-79) and (+)-wistarin (6/4-80), as described by Uenishi and colleagues (Scheme 6/4.19) [299]. After the coupling to give 6/4-83, an intramolecular Diels-Alder reaction occurred at room temperature, leading to the desired cyclic product 6/4-84 in 60% yield. [Pg.469]

As described above, our synthetic strategy involves the convergent construction of the central cyclopentanone ring with a carbonylative cross-coupling reaction and a photo-Nazarov cyclization reaction (Chart 2.2). The electrophilic coupling component 51 was synthesized by an intramolecular Diels-Alder reaction [34] and the nucleophilic coupling component 52 by a vinyiogous Mukaiyama aldol reaction [35]. [Pg.31]

To avoid the retro-Diels-Alder reaction, 56 was dihydroxylated prior to the introduction of the bromine atom (57). Removal of the acetonide group followed by cleavage of the diol afforded a bis-hemiacetal. Selective reduction of the less-hindered hemiacetal group gave 58. The remaining hemiacetal was protected, and the ketone was converted to an enol triflate, thus concluding the synthesis of the electrophilic coupling component 51. [Pg.32]


See other pages where Diels-Alder reactions couplings is mentioned: [Pg.669]    [Pg.669]    [Pg.61]    [Pg.335]    [Pg.75]    [Pg.530]    [Pg.706]    [Pg.774]    [Pg.894]    [Pg.225]    [Pg.105]    [Pg.466]    [Pg.586]    [Pg.671]    [Pg.359]    [Pg.288]    [Pg.284]    [Pg.214]    [Pg.259]    [Pg.52]    [Pg.106]    [Pg.589]    [Pg.306]    [Pg.180]    [Pg.289]    [Pg.160]    [Pg.32]   
See also in sourсe #XX -- [ Pg.60 ]

See also in sourсe #XX -- [ Pg.60 ]

See also in sourсe #XX -- [ Pg.60 ]




SEARCH



Hetero Diels-Alder coupling reaction

© 2024 chempedia.info