Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diels-Alder reaction factors

The extreme influence water can exert on the Diels-Alder reaction was rediscovered by Breslow in 1980, much by coincidence . Whale studying the effect of p-cyclodextrin on the rate of a Diels-Alder reaction in water, accidentally, the addition of the cyclodextrin was omitted, but still rate constants were observed that were one to two orders of magnitude larger than those obtained in organic solvents. The investigations that followed this remarkable observation showed that the acceleration of Diels-Alder reactions by water is a general phenomenon. Table 1.2 contains a selection from the multitude of Diels-Alder reactions in aqueous media that have been studied Note that the rate enhancements induced by water can amount up to a factor 12,800 compared to organic solvents (entry 1 in Table 1.2). [Pg.19]

Comparison of the water-induced acceleration of the reaction of 2.4a with the corresponding effect on 2.4g is interesting, since 2.4g contains an ionic group remote from the reaction centre. The question arises whether this group has an influence on the acceleration of the Diels-Alder reaction by water. Comparison of the data in Table 2.1 demonstrates that this is not the case. The acceleration upon going from ethanol to water amounts a factor 105 ( 10) for 2.4a versus 110 ( 11) for 2.4g. Apparently, the introduction of a hydrophilic group remote from the reaction centre has no effect on the aqueous acceleration of the Diels-Alder reaction. [Pg.52]

Interestingly, at very low concentrations of micellised Qi(DS)2, the rate of the reaction of 5.1a with 5.2 was observed to be zero-order in 5.1 a and only depending on the concentration of Cu(DS)2 and 5.2. This is akin to the turn-over and saturation kinetics exhibited by enzymes. The acceleration relative to the reaction in organic media in the absence of catalyst, also approaches enzyme-like magnitudes compared to the process in acetonitrile (Chapter 2), Cu(DS)2 micelles accelerate the Diels-Alder reaction between 5.1a and 5.2 by a factor of 1.8710 . This extremely high catalytic efficiency shows how a combination of a beneficial aqueous solvent effect, Lewis-acid catalysis and micellar catalysis can lead to tremendous accelerations. [Pg.143]

When both the 1,3-dipoIe and the dipolarophile are unsymmetrical, there are two possible orientations for addition. Both steric and electronic factors play a role in determining the regioselectivity of the addition. The most generally satisfactory interpretation of the regiochemistry of dipolar cycloadditions is based on frontier orbital concepts. As with the Diels-Alder reaction, the most favorable orientation is that which involves complementary interaction between the frontier orbitals of the 1,3-dipole and the dipolarophile. Although most dipolar cycloadditions are of the type in which the LUMO of the dipolarophile interacts with the HOMO of the 1,3-dipole, there are a significant number of systems in which the relationship is reversed. There are also some in which the two possible HOMO-LUMO interactions are of comparable magnitude. [Pg.647]

Many chiral metal complexes with Lewis acid properties have been developed and applied to the asymmetric Diels-Alder reaction. High enantioselectivity is, of course, one of the goals in the development of these catalysts. Enantioselectivity is not, however, the only factor important in their design. Other important considerations are ... [Pg.48]

Since the reactivity depends on the lowest HOMO-LUMO energy separation that can be achieved by the reacting partners, all the factors, steric and electronic, that lower the HOMO-LUMO distance increase the reaction rate and, as a consequence, allow the reactions to be carried out under mild conditions. Thus the normal electron-demand Diels-Alder reaction between 1,4-benzoquinone and 1,3-butadiene (Equation 2.2) proceeds at 35 °C almost quantitatively. [Pg.29]

Rideout and Breslow first reported [2a] the kinetic data for the accelerating effect of water, for the Diels Alder reactions of cyclopentadiene with methyl vinyl ketone and acrylonitrile and the cycloaddition of anthracene-9-carbinol with N-ethylmaleimide, giving impetus to research in this area (Table 6.1). The reaction in water is 28 to 740 times faster than in the apolar hydrocarbon isooctane. By adding lithium chloride (salting-out agent) the reaction rate increases 2.5 times further, while the presence of guanidinium chloride decreases it. The authors suggested that this exceptional effect of water is the result of a combination of two factors the polarity of the medium and the... [Pg.252]

Engberts [3e, f, 9, 29] investigated the influence of metal ions (Co, Ni, Cu +, Zn +) on the reaction rate and diastereoselectivity of Diels-Alder reaction of dienophile 31 (Table 6.5, R = NO2) with cyclopentadiene (32) in water and organic solvents. Relative reaction rates in different media and the catalytic effect of Cu are reported in Table 6.5. 10 m Cu(N03)2 accelerates the reaction in water by 808 times, and when compared with the uncatalyzed reaction in MeCN by a factor of 232 000. [Pg.265]

In the case of the reverse-electron-demand Diels-Alder reactions, the secondary orbital interaction between the Jt-HOMO of dienophile and the LUMO of 114 or the effect of the orbital phase enviromnents (Chapter Orbital Phase Enviromnents and Stereoselectivities by Ohwada in this volume) cannot be ruled out as the factor controlling the selectivity (Scheme 55). [Pg.216]

The effect of water molecules on pericyclic reactions can also be compared with the effects of Lewis acids on these reactions. The enhanced polarization of the transition state in these reactions would lead to stronger hydrogen bonds at the polar groups of the reactants, which will result in a substantial stabilization of the transition states in the same way Lewis acids do. A computer-simulation study on the Diels-Alder reaction of cyclopentadiene by Jorgensen indicated that this effect contributes about a factor of 10 to the rates.7... [Pg.375]

Many Diels-Alder [4 + 2] cycloadditions show a powerful pressure-induced acceleration, which is often turned to good synthetic purpose as discussed in Section III.A.2. Table 1 illustrates the effect of pressure on the Diels-Alder reaction of isoprene with acrylonitrile as a representative example. This reaction is accelerated by a factor of 1650 by raising the pressure from 1 bar to 10 kbar28. [Pg.552]

The behavior of complexes of nitroalkenes (42) with LA toward conjugated dienes is yet another factor underlying the role of these complexes. Conjugated nitroalkenes (42) are considered as active dienophiles in classical Diels-Alder reactions (104, 105). On the contrary, in the presence of SnCl4, nitroalkenes (42) react with cyclopentadiene and 1,3-cyclohexadiene exclusively at one double bond (103). Therefore, it is highly probable that the 42 + 43 cycloaddition proceeds by a nonconcerted mechanism in the presence of LA (see Scheme 3.40). [Pg.463]

The high enantioselectivity shown in the above reactions can be attributed to two important factors. First, coordination of the Lewis acid with the a-hydroxy ketone moiety of dienophile 17 or 19 leads to the formation of a rigid five-membered chelate 21. This chelate causes the differentiation of the two dia-stereotopic faces of the enone system. Second, arising from the established absolute configuration of 17 and 19, within 21, the Diels-Alder reaction proceeds with the enone fragment at its cisoid position (yyu-planar). [Pg.272]

The forward reaction is extremely easy bevause of aromaticity recovery. These aspects of the intramolecular Diels-Alder reaction are generally very useful and able to provide polycyclic fused six-membered ring compounds which are otherwise difficult to realize. The controlling factors, geometry and mechanism of intramolecular Diels-Alder reactions have been comprehensively reviewed elsewhere i°4,106), and it is not our intention to discuss these in details. However, the synthetic utility of the reaction is demonstrated by the following examples107). [Pg.129]

Diels-Alder adduct from cyclopentadiene, 8 222t Diels-Alder reactions of, 25 488-489 economic aspects of, 25 507-509 electrophilic addition of, 25 490 in ene reactions, 25 490 esterification of, 25 491 free-radical reactions of, 25 491 from butadiene, 4 371 Grignard-type reactions of, 25 491 halogenation of, 15 491—492 health and safety factors related to, 25 510-511... [Pg.546]

Steric factors have also been studied in several cases. It has been found that dienes which easily adopt the. v-cis confirmation undergo Diels-Alder reaction readily. The cyclic dienes undergo the reaction if they have cis conformation. If they are frozen into a trans-conformation, the reaction does not occur. This explains why e and / undergo the reaction easily but g fails to react. [Pg.50]

Besides the above configurational and steric factors electronic effects of substituents have also been studied on Diels-Alder reaction. How the electronic and steric factors both operate is best afforded by cyclobutadiene which is a highly reactive species and undergoes Diels-Alder reaction even at very low temperature to give a mixture of the following two products. [Pg.50]

While many observations are well understood, e.g. those dealing with the reaction rate or with the selectivity, there are some factors which cannot be generalized. Many transformations of particular reactants or under unusual reaction conditions led to unexpected results. There are often singular explanations for such reactions but no overall concept. For instance, computations on Diels-Alder transition structures and thermodynamics of retro-Diels-Alder reactions confirmed that the activation volume of these [4 + 2]-cycloadditions is negative80. This result, pointing to the compact character of the transition structure, is used to explain the dependence of reactivity and selectivity on internal as well as external pressure81-83. These effects are only observed at relatively high external pressures (Table 5). [Pg.1041]

The present chapter aims at introducing the reader to the emerging field of organic synthesis in water as exemplified by the well-known Diels-Alder reaction. As this transformation is exceptionally well understood mechanistically and highly valuable for building complex structures, it lends itself to examining and probing the effects of aqueous media and other factors which influence the reactivities and selectivities. [Pg.1081]

Extensive reviews of Diels-Alder reactions and hetero-Diels-Alder reactions in aqueous media have been presented. " " " " Micelles in the presence of catalytically active transition-metal ions catalyse the Diels-Alder reaction between 3-(/ -substituted phenyl)-l-(2-pyridyl)prop-2-en-l-ones with cyclopentadiene by a factor of 1.8 x 10 compared with the uncatalysed reaction in MeCN. " Diels-Alder reactions have been shown to be accelerated by encapsulation of both reactants by pseudospherical capsules assembled from self-complementary molecules (103). " ... [Pg.476]


See other pages where Diels-Alder reaction factors is mentioned: [Pg.11]    [Pg.27]    [Pg.94]    [Pg.113]    [Pg.83]    [Pg.303]    [Pg.232]    [Pg.110]    [Pg.254]    [Pg.198]    [Pg.126]    [Pg.390]    [Pg.391]    [Pg.232]    [Pg.20]    [Pg.312]    [Pg.269]    [Pg.147]    [Pg.64]    [Pg.151]    [Pg.180]    [Pg.1036]    [Pg.1066]    [Pg.1081]    [Pg.1081]    [Pg.348]    [Pg.119]    [Pg.469]    [Pg.470]   
See also in sourсe #XX -- [ Pg.69 ]




SEARCH



Diels-Alder reaction conformational factors

Diels-Alder reaction factors favoring

© 2024 chempedia.info