Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dicarbonyl enolates, reactions with

With unsymmetrical ketones, a mixture of regioisomeric enolates may be formed, resulting in a mixture of Michael adducts. Deprotonation in a protic solvent is reversible and leads predominantly to the thermodynamically favoured, more-substituted enolate. Reaction with a Michael acceptor then gives the product from reaction at the more-substituted side of the ketone carbonyl group. The 1,5-dicarbonyl compound 24 is the major product from conjugate addition of 2-methylcyclohexanone to methyl acrylate using potassium tert-butoxide in the protic solvent tert-butanol (1.39). In contrast, the major product from Michael addition... [Pg.21]

Other Electrophiles. In addition to carbonyl compounds, ester enolate (1) also reacts with other electrophiles. With nitrones, the product is dependent upon the structure of the nitrone a,N-dialkyl nitrones provide alkenes, while a-aryl-A-alkyl nitrones or aW-diaryl nitrones usually give aziridines. With the phenylhy-drazone of a 1,2-dicarbonyl compound, reaction with (1) provides a convenient preparation of 3(2f/)-P3 dazinones (eq 3). ... [Pg.293]

Today, multi-parallel synthesis lies at the forefront of organic and medicinal chemistry, and plays a major role in lead discovery and lead optimization programs in the pharmaceutical industry. The first solid-phase domino reactions were developed by Tietze and coworkers [6] using a domino Knoevenagel/hetero-Diels-Alder and a domino Knoevenagel/ene protocol. Reaction of solid-phase bound 1,3-dicarbonyl compounds such as 10-22 with aldehydes and enol ethers in the presence of piperidinium acetate led to the 1-oxa-1,3-butadiene 10-23, which underwent an intermolecular hetero-Diels-Alder reaction with the enol ethers to give the resin-bound products 10-24. Solvolysis with NaOMe afforded the desired dihydro-pyranes, 10-25 with over 90 % purity. Ene reactions have also been performed in a similar manner [7]. [Pg.569]

Aside from alcohols, other oxygen nucleophiles have also participated in hydroalkoxylation reactions with alkynes. The most common of these are 1,3-dicarbonyl compounds, whose enol oxygens are readily available to add to alkynes. Cyclization reactions of this type have been carried out under Pd(0) catalysis with various aryl or vinyl iodides or triflates, often in the presence of CO, affording the corresponding furan derivatives (Equation (95)).337-340 A similar approach employing cyclic 1,3-diketones has also been reported to prepare THFs and dihydropyrans under Pd, Pt, or W catalysis.341 Simple l-alkyn-5-ones have also been isomerized to furans under the influence of Hg(OTf)2.342... [Pg.675]

Hydroxycoumarin can be considered as an enol tautomer of a 1,3-dicarbonyl compound conjugation with the aromatic ring favours the enol tautomer. This now exposes its potential as a nucleophile. Whilst we may begin to consider enolate anion chemistry, no strong base is required and we may formulate a mechanism in which the enol acts as the nucleophile, in a simple aldol reaction with formaldehyde. Dehydration follows and produces an unsaturated ketone, which then becomes the electrophile in a Michael reaction (see Section 10.10). The nucleophile is a second molecule of 4-hydroxycoumarin. [Pg.419]

Similar to other cyclic 1,3-dicarbonyl compounds, tetramic acids in solution predominantly exist in their enol form. As tram-configured enols they do not give a color reaction with FeCl3. The pKa of unsubstituted tetramic acid 2a was determined to be 6.4 [72JCS(P1)2121]. [Pg.168]

D. Reactions of Magnesium Dicarbonyl Enolates with Eiectrophiles... [Pg.489]

The reaction with optically active hydrazones provided an access to optically active ketones. The butylzinc aza-enolate generated from the hydrazone 449 (derived from 4-heptanone and (,S )-1 -amino-2-(methoxymethyl)pyrrolidine (SAMP)) reacted with the cyclopropenone ketal 78 and led to 450 after hydrolysis. The reaction proceeded with 100% of 1,2-diastereoselectivity at the newly formed carbon—carbon bond (mutual diastereo-selection) and 78% of substrate-induced diastereoselectivity (with respect to the chiral induction from the SAMP hydrazone). The latter level of diastereoselection was improved to 87% by the use of the ZnCl enolate derived from 449, at the expense of a slight decrease in yield. Finally, the resulting cyclopropanone ketal 450 could be transformed to the polyfunctional open-chain dicarbonyl compound 451 by removal of the hydrazone moiety and oxymercuration of the three-membered ring (equation 192). [Pg.968]

The reactions discussed in this chapter that depend on the formation of enolate anions (i.e., halogenation, aldol addition, and alkylation) often proceed smoothly and under milder conditions with 1,3-diketones than with monoketones. This is because the 1,3-diketones are stronger acids and therefore can form the enolate anions with weaker bases. The principal synthetic methods for preparing 1,3-dicarbonyl compounds will be discussed in Chapter 18. [Pg.776]

A related allylic C-H insertion that has considerable promise for strategic organic synthesis is the reaction with enol silyl ethers [23]. The resulting silyl-protected 1,5-dicarbonyls would otherwise typically be formed by means of a Michael addition. Even though with ethyl diazoacetates vinyl ethers are readily cyclopropanated [l],such reactions are generally disfavored in trisubstituted vinyl ethers with the sterically crowded donor/acceptor carbenoids [23]. Instead, C-H insertion predominates. Again, if sufficient size differentiation exists at the C-H activation site, highly diastereoselective and enantioselective reactions can be achieved as illustrated in the reaction of 20 with 17 to form 21 [23]. [Pg.87]

Keto-enol equilibrium constants for simple /i-dicarbonyl compounds, RCOCH2COX (R = X = Me R = Me, Ph for X = OEt) have been measured in water1423 by a micelle perturbation method previously reported for benzoylacetone142b (R = Ph, X = Me). The results have been combined with kinetic data for nitrosation by NO+, C1NO, BrNO, and SCNNO in all cases, reaction with the enol was found to be rate limiting. [Pg.25]

It has been shown that selective a-vinylation of enolate anions derived from 1,3-dicarbonyl compounds can be achieved by reaction with 4-/-butyl-1 -cyclohexenyl-(aryl)iodonium and 1-cyclopentenyl(aryl)iodonium tehafluoroborates without competing a-arylation, provided that the alkenyliodonium salt used bears a / -mcthoxyphcnyl, rather than phenyl, group.24... [Pg.331]

Similarly, ethynylation of / -dicarbonyl enolates via the tandem Michael-car-bene rearrangement (MCR) pathway occurs smoothly by the reaction with the parent ethynyl-A3-iodane 128. High migratory aptitude of a-hydrogens of alkylidene carbenes is responsible for this facile ethynylation [199]. [Pg.56]

Alkynyl(phenyl)iodonium salts can be used for the preparation of substituted alkynes by the reaction with carbon nucleophiles. The parent ethynyliodonium tetrafluoroborate 124 reacts with various enolates of /J-dicarbonyl compounds 123 to give the respective alkynylated products 125 in a high yield (Scheme 51) [109]. The anion of nitrocyclohexane can also be ethynylated under these conditions. A similar alkynylation of 2-methyl-1,3-cyclopentanedione by ethynyliodonium salt 124 was applied in the key step of the synthesis of chiral methylene lactones [110]. [Pg.120]

Cyclopentenes are commonly formed in the reaction of the appropriate alkynyliodonium salts with enolate anions. Various alkynyliodonium tetrafluo-roborates interact with / -dicarbonyl enolates to give products of cyclopentene annulation in 50-90% yield [121]. Several examples of such annulations are shown in Scheme 59. The carbene cyclization can also occur when the long alkyl... [Pg.123]

Figure 2.9. Glucose can enolize and reduce transition metals thereby generating superoxide free radicals (02" ), hydroxyl radicals ( OH), hydrogen peroxide (H202) and reactive dicarbonyl compounds. Adapted with permission from Wolff, S. P. (1996). Free radicals and glycation theory. In The Maillard Reaction. Consequences for the Chemical and Life Sciences, Ikan, R., ed., John Wiley Sons, Chichester, UK, 73-88. Figure 2.9. Glucose can enolize and reduce transition metals thereby generating superoxide free radicals (02" ), hydroxyl radicals ( OH), hydrogen peroxide (H202) and reactive dicarbonyl compounds. Adapted with permission from Wolff, S. P. (1996). Free radicals and glycation theory. In The Maillard Reaction. Consequences for the Chemical and Life Sciences, Ikan, R., ed., John Wiley Sons, Chichester, UK, 73-88.
The mechanisms used for reaction of hydroxide with monocarbonyl and dicarbonyl compounds differed because for the more reactive dicarbonyl compounds the desolvation cost of bringing hydroxide into direct contact with the acidic CH became large relative to the overall kinetic barrier instead the reaction involved a bridging water that lost a proton to hydroxide as it abstracted a proton from carbon, thus avoiding the unfavorable contact species. An analogous mechanism was needed for water reaction with dicarbonyl compounds with two waters being involved so that formation of a direct complex of hydronium ion with the enolate carbon could be avoided. Thus, the mechanisms for the monocarbonyl compounds were two-dimensional and for the dicarbonyl compounds were three-dimensional. These mechanisms are illustrated in Fig. 11. [Pg.200]

Attempts to react enol(ate)s of esters with aliphatic aldehydes are doomed as the aldehyde will simply condense with itself. If the ester is replaced by a malonate 60, there is so much enol(ate) from the (5-dicarbonyl compound that the reaction is good. This style of aldol reaction is often called a Knoevenagel reaction10 and needs only a buffered mixture of amine and carboxylic acid. The enol reacts with the aldehyde 61 in the usual way and enolisation of the product 62 usually means that dehydration occurs under the conditions of the reaction. [Pg.144]

Despite the synthetic possibilities suggested by this early study, the chemistry of the alkynyliodonium salts lay dormant until the mid-1980s. In 1986, Ochiai and his coworkers published an important communication which shaped much of the later thinking on the reactions of alkynyliodonium ions with nucleophiles28. When / -dicarbonyl enolates are treated with alkynyliodonium tetrafluoroborates containing a long (> three carbons) alkyl chain, derivatives of cyclopentene are produced. This is illustrated in equation 41 for the... [Pg.1191]

When / -dicarbonyl enolates are allowed to react with alkynyliodonium salts, typically in ter/-butyl alcohol or THF, alkynyl- and/or cyclopentenyl- -dicarbonyl compounds are obtained. The product compositions are largely regulated by the migratory aptitude of R in the alkynyl moiety and the availability of alkyl side chains for the MC-insertion (MCI) pathway (equation 45). These divergent modes of reactivity are nicely illustrated by the reactions of the 2-phenyl-1,3-indandionate ion with ethynylfphenyl)- and 4-methyl-1-hexynyl(phenyl)iodonium tetrafluoroborates (equation 1 15)27 2. [Pg.1213]

Because the hydrogen atom and phenyl group migrate so readily, the reactions of / -dicarbonyl enolates with ethynyl- and (phenylethynyl)iodonium salts can be expected to result in alkynylation. It has already been noted that the 2- -hexyl-l,3-indandionate ion undergoes alkynylation with (phenylethynyl)phenyliodonium tetrafluoroborate (equation 43), despite the availability of the -hexyl group for [2 + 3] annulation. Ethynylations of six / -dicarbonyl enolates and the anion of 2-nitrocyclohexane with ethynyl(phenyl)-iodonium tetrafluoroborate in THF have also been reported27. For example, admixture of the ethynyliodonium salt and the anion of ethyl 2-cyclopentanone-l-carboxylate in THF affords the 1-ethynyl derivative in 71% isolated yield (equation 124)27. [Pg.1216]

Tfce preferred synthetic route to these important intermediates is the Mannich reaction (Chapter 27), The compound is stored as the stable Mannich base and the unstable enone released by elimination of a tertiary amine with mild base, The same conditions are right for this elimination and for conjugate addition, Thus the aw-methylene compounds can be formed in the flask for immediate reaction with the enol(ate) nucleophile, The overall reaction from (3-amino carbonyl to 1,5-dicarbonyl appears to be a substitution but the actual mechanism involves elimination and conjugate addition,... [Pg.758]

Fluorinalion of 1,3-dicarbonyl compounds. 1,3-Dicarbonyl compounds that exist partly in the enol form are converted by 1 into the 2-fluoro derivative in moderate yield. The yield is generally improved by reaction with the corresponding sodium enolate. When the enol content of the 1,3-dicarbonyl substrate is small, no reaction occurs with 1, although the corresponding metal enolate does react. [Pg.3]

Ambident anions are mesomeric, nucleophilic anions which have at least two reactive centers with a substantial fraction of the negative charge distributed over these cen-ters ) ). Such ambident anions are capable of forming two types of products in nucleophilic substitution reactions with electrophilic reactants . Examples of this kind of anion are the enolates of 1,3-dicarbonyl compounds, phenolate, cyanide, thiocyanide, and nitrite ions, the anions of nitro compounds, oximes, amides, the anions of heterocyclic aromatic compounds e.g. pyrrole, hydroxypyridines, hydroxypyrimidines) and others cf. Fig. 5-17. [Pg.269]

When ethoxide is used as a base to abstract a-proton, it could react with the alkyl halide (Sn2) to form ether. However, the acid-base equilibrium with the diketone prefers the more stable, less basic enolate over the ethoxide, essentially consuming the ethoxide. Thus, the very stable enolates from 1,3-dicarbonyl compounds are able to undergo Sn2 reactions with alkyl halides without competition from the alkoxide catalyst. [Pg.115]


See other pages where Dicarbonyl enolates, reactions with is mentioned: [Pg.19]    [Pg.57]    [Pg.28]    [Pg.452]    [Pg.460]    [Pg.1003]    [Pg.918]    [Pg.441]    [Pg.488]    [Pg.557]    [Pg.57]    [Pg.459]    [Pg.1637]    [Pg.39]    [Pg.93]    [Pg.1213]    [Pg.1217]    [Pg.57]    [Pg.382]    [Pg.15]    [Pg.460]    [Pg.3]   


SEARCH



0 -dicarbonyl enolates

Dicarbonyl enolates, reactions with electrophiles

Dicarbonyl enols

Enols reactions with

Reactions, with enolates

© 2024 chempedia.info