Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diazonium ions, and

The product of this series of steps is an alkyl diazonium ion, and the amine is said to have been diazotized Alkyl diazonium ions are not very stable decomposing rapidly under the conditions of their formation Molecular nitrogen is a leaving group par excel lence and the reaction products arise by solvolysis of the diazonium ion Usually a car bocation intermediate is involved... [Pg.944]

Aryl diazonium ions prepared by nitrous acid diazotization of primary arylamines are substantially more stable than alkyl diazonium ions and are of enormous synthetic value Their use m the synthesis of substituted aromatic compounds is described m the following two sections... [Pg.945]

FIGURE 22 6 Flowchart showing the synthetic origin of aryl diazonium ions and their most useful transfer mations... [Pg.946]

The acid—base equiUbtia are fundamental to the kinetics of azo coupling and of practical significance for azo technology. Thus it is important that coupling reactions be carried out in a medium such that the acid—base equiUbtia of the diazo and coupling components favor as much as possible the diazonium ions and the phenolate ions or the free amine, respectively. [Pg.428]

While A -dimethylaniline is an extremely reactive aromatic substrate and is readily attacked by such weak electrophiles as aiyl diazonium ions and nitrosonium ion, this reactivity is greatly diminished by introduction of an alkyl substituent in the ortho position. Explain. [Pg.597]

Certain aliphatic diazonium species such as bridgehead diazonium ions and cyclo-propanediazonium ions, where the usual loss of N2 would lead to very unstable carbocations, have been coupled to aromatic substrates. ... [Pg.86]

Compounds containing the neutral (formally zwitterionic) group =N2 attached by one atom to carbon are named by adding the prefix diazo- to the name of the parent compound (Rule 931.4), e.g., diazomethane, ethyl diazoacetate. Diazo is a so-called characteristic group appearing only as a prefix in substitutive nomenclature. Chemical Abstracts and Beilstein indexing of diazo compounds is analogous to that mentioned above for diazonium ions and salts, but Diazo compounds is not... [Pg.5]

The most comprehensive modern works on the subject are the relevant volumes of Patai s series The Chemistry of Functional Groups, namely the two volumes on diazonium and diazo groups (Patai, 1978), the two volumes on hydrazo, azo, and azoxy groups (Patai, 1975) and the two Supplement C volumes on triple-bonded groups (Patai and Rappoport, 1983). Supplement C contains chapters on arene- and alkene-diazonium ions and on dediazoniation reactions. [Pg.10]

The reversibility of aromatic diazotization in methanol may indicate that the intermediate corresponding to the diazohydroxide (3.9 in Scheme 3-36), i. e., the (Z)-or (is)-diazomethyl ether (Ar — N2 — OCH3), may be the cause of the reversibility. In contrast to the diazohydroxide this compound cannot be stabilized by deprotonation. It can be protonated and then dissociates into a diazonium ion and a methanol molecule. This reaction is relatively slow (Masoud and Ishak, 1988) and therefore the reverse reaction of the diazomethyl ether to the amine may be competitive. Similarly the reversibility of heteroaromatic amine diazotizations with a ring nitrogen in the a-position may be due to the stabilization of the intermediate (Z)-diazohydroxide, hydrogen-bonded to that ring nitrogen (Butler, 1975). However, this explanation is not yet supported by experimental data. [Pg.64]

In this chapter we discuss only the physical structure of arene- and heteroarene-diazonium ions and salts. The chemical reactions of diazonium ions and the chemical structures of the products will be the subject of later chapters. [Pg.66]

The mass spectrometry of diazo compounds was reviewed by Zeller (1983) and by Lebedev (1991). It is difficult to record mass spectra of diazonium salts using conventional techniques. With the water thermospray method, however, Schmelzeisen-Redeker et al. (1985) observed the diazonium ion and various fragments such as [Ar+ - N2 + 2H]+ and [Ar + N2 + H20]+. Ambroz et al. (1988) applied the fast atom bombardment (FAB) technique using a 3-nitrobenzylalcohol matrix. Peaks for ArNJ, Ar+, and [M + ArN2]+ and further peaks due to solvated ions were found. [Pg.82]

Figure 5-2 shows schematically the dependence of the relative concentration of the diazo equilibrium forms on the pH (for the diazoanhydride mentioned in this figure see Sec. 5.2). The relative concentrations of the two major equilibrium forms, the diazonium ion and the diazoate ion, decrease on the right and left sides, respectively, of the pH value corresponding to equal concentrations of these two forms ([ArNj] = [ArN20-]). The gradients correspond to a factor of 100 per pH unit, compared with only 10 per pH unit in the case of dibasic Bronsted acids. The equilibrium concentrations of the diazohydroxide and the diazoanhydride (except for very reactive diazonium ions such as the benzene-1,4-bisdiazonium dication mentioned above) are very small at all pH values, with a maximum at pH = pKm. [Pg.92]

The complexity of the system consisting of the diazonium ion and the four reaction products shown in Scheme 5-14 is evident. In contrast to the two-step reaction sequence diazonium ion <= (Z)-diazohydroxide <= (Z)-diazoate (Scheme 5-1 in Sec. 5.1), equilibrium measurements alone cannot give unambiguous evidence for the elucidation of the mechanistic pathway from, for example, diazonium ion to ( )-diazoate. Indeed, kinetic considerations show that, depending on the reaction conditions (pH etc.) and the reactivity of a given diazonium ion (substituents, aromatic or heteroaromatic ring), different pathways become dominant. [Pg.97]

The rapid formation of the (Z)-diazoate is followed by the slower (Z/J )-isomeri-zation of the diazoate (see Scheme 5-14, reaction 5). Some representative examples are given in Table 5-2. Both reactions are first-order with regard to the diazonium ion, and the first reaction is also first-order in [OH-], i.e., second-order overall. So as to make the rate constants k and k5 directly comparable, we calculated half-lives for reactions with [ArNj ]0 = 0.01 m carried out at pH = 9.00 and 25 °C. The isomerization rate of the unsubstituted benzenediazonium ion cannot be measured at room temperature due to the predominance of decomposition (homolytic dediazoniations) even at low temperature. Nevertheless, it can be concluded that the half-lives for (Z/ )-isomerizations are at least five powers of ten greater than those for the formation of the (Z)-diazohydroxide (reaction 1) for unsubstituted and most substituted benzenediazonium ions (see bottom row of Table 5-2). Only for diazonium ions with strong -M type substituents (e.g., N02, CN) in the 2- or 4-position is the ratio r1/2 (5)/t1/2 (1) in the range 6 x 104 to 250 x 104 (Table 5-2). [Pg.99]

In Sections 5.2 and 5.3 it was shown that experimental data are consistent with a direct rearrangement of the (Z)- to the (ii)-diazohydroxide rather than with a recombination after a primary dissociation of the (Z)-isomer into a diazonium ion. Positive evidence for direct formation of the (ii)-diazohydroxide from the diazonium ion and a hydroxide ion (or water) is still lacking (see Scheme 5-15 in Sec. 5.2). For diazo ethers, however, Broxton and Roper (1976) came to the conclusion that there is no direct (Z) >(E) conversion, but rather that in the system ArNj + OCH3/(Z)-diazo ether/(Zi)-diazo ether the (Z)-ether is the kinetically determined product and the (iE )-isomer the thermodynamic product, as shown in Scheme 6-3. [Pg.111]

The significantly lower dediazoniation rate of the l/f-3,5-dimethylpyrazole-4-di-azonium ion (8.22) compared with that of the benzenediazonium ion was the central subject of an MNDO study by Brint et al. (1985). The diazonium ion 8.22 has been recovered unchanged after heating for 3 h at 100 °C in aqueous hydrochloric acid. It is not completely decomposed after a similar treatment for 48 h (Reilly and Madden, 1925). Brint et al. calculated the heats of formation of this diazonium ion and of the corresponding heteroaryl cation 8.23 (Scheme 8-16). They found that the values of A//f for the diazonium ion 8.22 and for the benzenediazonium ion are almost identical, whereas that for the cation 8.23 is much greater. The energy required to dissociate the pyrazolediazonium ion is therefore nearly twice that required for the benzenediazonium ion (A//f = 329 and 194 kJ mol-1, respectively). [Pg.179]

Packer and Richardson (1975) and Packer et al. (1980) made use of the fact that electrons can be generated in water by y-radiation from a 60Co source (Scheme 8-29) to induce a free radical chain reaction between diazonium ions and alcohols, aldehydes, or formate ion. It has to be emphasized that the radiolytically formed solvated electron in Scheme 8-29 is only a part of the initiation steps (Scheme 8-30) by which an aryl radical is formed. The aryl radical initiates the propagation steps shown in Scheme 8-31. Here the alcohol, aldehyde, or formate ion (RH2) is the reducing agent (i.e., the electron donor) for the main reaction. The process is a hydro-de-diazoniation. [Pg.190]

Analysis of the decay of the sum of the diazonium ion and (jF)-diazoate concentrations as a function of time reveals that there are two reactions. The first is observed only at the beginning and at relatively low temperatures (20 °C) it is first order in relation to the above sum of concentrations and to the hydroxide ion concentration. The second is a very complex function of the hydroxide ion concentration, so that a mechanistic interpretation was not possible. [Pg.204]

The UV spectra suggest that the equilibrium between the diazonium ion and the solvent, on the one hand, and an electron donor-acceptor complex (8.58) on the other, lies on the side of the complex. The latter may possibly exist also as a radical pair (8.60) or a covalent compound (8.59). Dissociation of this complex within a cage to form an aryl radical, a nitrogen molecule, and the radical cation of DMSO is slow and rate-determining. Fast subsequent steps lead to the products observed. [Pg.206]

Kochi (1956a, 1956b) and Dickerman et al. (1958, 1959) studied the kinetics of the Meerwein reaction of arenediazonium salts with acrylonitrile, styrene, and other alkenes, based on initial studies on the Sandmeyer reaction. The reactions were found to be first-order in diazonium ion and in cuprous ion. The relative rates of the addition to four alkenes (acrylonitrile, styrene, methyl acrylate, and methyl methacrylate) vary by a factor of only 1.55 (Dickerman et al., 1959). This result indicates that the aryl radical has a low selectivity. The kinetic data are consistent with the mechanism of Schemes 10-52 to 10-56, 10-58 and 10-59. This mechanism was strongly corroborated by Galli s work on the Sandmeyer reaction more than twenty years later (1981-89). [Pg.250]

As discussed in Section 10.3, the system consisting of a diazonium ion and cuprous ions can be used for hydroxy-de-diazoniation at room temperature in the presence of large concentrations of hydrated cupric ions (Cohen et al., 1977 see Schemes 10-7 to 10-9). With (Z)-stilbene-2-diazonium tetrafluoroborate under these conditions, however, the major product of ring closure of the initially formed radical was phenanthrene (64%). When the cupric nitrate was supplemented by silver nitrate the yield increased to 86% phenanthrene. Apparently, the radical undergoes such rapid ring closure that no electron transfer to the cupric ion takes place. [Pg.264]

In the context of Scheme 11-1 we are also interested to know whether the variation of K observed with 18-, 21-, and 24-membered crown ethers is due to changes in the complexation rate (k ), the decomplexation rate (k- ), or both. Krane and Skjetne (1980) carried out dynamic 13C NMR studies of complexes of the 4-toluenediazo-nium ion with 18-crown-6, 21-crown-7, and 24-crown-8 in dichlorofluoromethane. They determined the decomplexation rate (k- ) and the free energy of activation for decomplexation (AG i). From the values of k i obtained by Krane and Skjetne and the equilibrium constants K of Nakazumi et al. (1983), k can be calculated. The results show that the complexation rate (kx) does not change much with the size of the macrocycle, that it is most likely diffusion-controlled, and that the large equilibrium constant K of 21-crown-7 is due to the decomplexation rate constant k i being lower than those for the 18- and 24-membered crown ethers. Izatt et al. (1991) published a comprehensive review of K, k, and k data for crown ethers and related hosts with metal cations, ammonium ions, diazonium ions, and related guest compounds. [Pg.299]

Zollinger and coworkers (Nakazumi et al., 1983) therefore supposed that the diazonium ion and the crown ether are in a rapid equilibrium with two complexes as in Scheme 11-2. One of these is the charge-transfer complex (CT), whose stability is based on the interaction between the acceptor (ArNj) and donor components (Crown). The acceptor center of the diazonium ion is either the (3-nitrogen atom or the combined 7r-electron system of the aryl part and the diazonio group, while the donor centers are one or more of the ether oxygen atoms. The other partner in the equilibrium is the insertion complex (IC), as shown in structure 11.5. Scheme 11-2 is intended to leave the question open as to whether the CT and IC complexes are formed competitively or consecutively from the components. ... [Pg.300]

In studies aimed at understanding the influence of structure on the reactivity of diazonium ions, Diener and Zollinger (1986) found that the NMR chemical shifts of the aromatic or heteroaromatic parent compounds provided a novel probe. This method can be applied both to substituted benzenediazonium ions and to various heteroaromatic diazonium ions, and it also provides semiquantitative information on the relative reactivities of the l,3,4-triazole-2-diazonium ion (12.5) and its deprotonated zwitterion (12.6). [Pg.310]

The situation is not as clearly solved in a positive or negative sense for arenediazo phenyl ethers. Here three alternatives have to be considered, namely an intramolecular rearrangement of the arenediazo phenyl ether (Scheme 12-11, A), and two types of intermolecular rearrangement, either by heterolytic dissociation into a diazonium ion and a phenoxide ion (B) or by homolytic dissociation into a radical pair or two free radicals (C). [Pg.314]

Phenol ethers show some, admittedly low, reactivity towards diazonium ions and also undissociated phenols (see Sec. 12.7). An instructive example of the reactivity of phenol ethers was reported by Ronaldson (1981). He found that 1,2-dimethoxy-benzene (veratrole) does not react with the 4-nitrobenzenediazonium ion, but the azo coupling product is formed when the more electrophilic 2,4-dinitrobenzenediazo-nium ion is used. [Pg.317]

Triphenylphosphonium cyclopentadienylide (12.109) reacts at the 2-position with diazonium ions and with diazocyclopentadiene (12.110), due to the aromatic character of the five-membered ring, as shown in the mesomeric structures 12.109 a and 12.109b (Ramirez and Levy, 1957, 1958a, 1958b). [Pg.343]

Quantitative studies based on kinetic measurements using strongly electrophilic diazonium ions and, as coupling components, 1-naphthol, 2-naphthol-6-sulfonic acid, and resorcinol in aqueous acid were made by Sterba and coworkers (Kropacova et al., 1970 Kavalek et al., 1970 Sterba and Valter, 1972 Machackova et al., 1972a). In a typical case (2,6-dichloro-4-nitrobenzenediazonium ion and 1-naphthol) the dependence of the logarithm of the measured rate constant (ks) on pH was linear with a slope of 1. At pH < 1, however, a practically constant value of ks was obtained. The measured rate constants therefore correspond to Scheme 12-62, in which the first term relates to the reaction of the naphthoxide ion and the second to that of the undissociated naphthol Ka is the acidity constant of 1-naphthol. [Pg.348]

The only really different case is the azo coupling reaction of nitroethane investigated by Sterba and coworkers (Machacek et al., 1968a, 1968b). With the 4-nitrobenzenediazonium ion the reaction is zero-order with respect to diazonium ion and first-order in both nitroethane and base. Obviously the rate-limiting step is the dissociation of nitroethane the formation of the anion is slower than its subsequent reaction with this diazonium ion. For reactions with diazonium ions of lower reactivity it was found necessary to use the reaction system of Scheme 12-64 with the nitroethane anion as steady state intermediate (Machacek et al., 1968b). [Pg.351]

In the azo coupling reaction of acetoacetanilide (Dobas et al., 1969b) the reaction steps of Schemes 12-71 and 12-72 constitute a steady-state system, i.e., Arx [B] < Ar [HB+] == 2[Ar —NJ] A 2 — 0 with a fast subsequent deprotonation (Scheme 12-73). As with nitroethane, this reaction is general base-catalyzed because the ratedetermining step is the formation of the anion of acetoacetanilide (Scheme 12-71). In contrast to the coupling of nitroethane, however, the addition of the diazonium ion (Scheme 12-72) is rate-limiting. The overall kinetics are therefore between zero-order and first-order with respect to diazonium ion and not strictly independent of [ArNJ ] as in the nitroethane coupling reaction. [Pg.363]

If the para position is blocked then the amino group will enter the ortho position. Friswell and Green102 suggested an acid-catalysed fission of LXIII to form the diazonium ion and the primary aromatic amine (the reversal of its formation)... [Pg.463]

One of the first reports involving vinyl diazonium ions and possible vinyl cations is the work of Newman and co-workers (107) on the alkaline decomposition of 3-nitroso-2-oxazolidones, 132. When an aqueous suspension or... [Pg.254]

A number of miscellaneous reactions involving diazonium ions and possible vinyl cations have been reported. Treatment of amine 138 with sodium nitrite in 20% aqueous acetic acid is reported to give methyl cyclopropyl ketone as one of four products (116). The reaction has been postulated to involve a vinyl cation, presumably by the following sequence of reactions (116) ... [Pg.256]


See other pages where Diazonium ions, and is mentioned: [Pg.186]    [Pg.27]    [Pg.77]    [Pg.96]    [Pg.115]    [Pg.180]    [Pg.201]    [Pg.204]    [Pg.229]    [Pg.232]    [Pg.307]    [Pg.347]    [Pg.362]    [Pg.378]    [Pg.392]   


SEARCH



Azo Coupling Reactions of Aliphatic Diazonium Ions and Related Processes

© 2024 chempedia.info