Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diazonium reactivity

Diazonium groups react with active hydrogens on aromatic rings to give covalent diazo bonds. Generation of a diazonium-reactive group usually is done from an aromatic amine by reaction... [Pg.271]

Figure 11.16 The aminophenyl group of this biotin derivative can be transformed into a diazonium reactive group by treatment with sodium nitrite in dilute HC1. Figure 11.16 The aminophenyl group of this biotin derivative can be transformed into a diazonium reactive group by treatment with sodium nitrite in dilute HC1.
The diazonium salts 145 are another source of arylpalladium com-plexes[114]. They are the most reactive source of arylpalladium species and the reaction can be carried out at room temperature. In addition, they can be used for alkene insertion in the absence of a phosphine ligand using Pd2(dba)3 as a catalyst. This reaction consists of the indirect substitution reaction of an aromatic nitro group with an alkene. The use of diazonium salts is more convenient and synthetically useful than the use of aryl halides, because many aryl halides are prepared from diazonium salts. Diazotization of the aniline derivative 146 in aqueous solution and subsequent insertion of acrylate catalyzed by Pd(OAc)2 by the addition of MeOH are carried out as a one-pot reaction, affording the cinnamate 147 in good yield[115]. The A-nitroso-jV-arylacetamide 148 is prepared from acetanilides and used as another precursor of arylpalladium intermediate. It is more reactive than aryl iodides and bromides and reacts with alkenes at 40 °C without addition of a phosphine ligandfl 16]. [Pg.148]

Differences in reactivity between amino and imino isomers toward CSj and diazonium salts (199. 165). [Pg.37]

Some recent general reviews deal with the mechanism of N-nitrosation in aqueous solution (345), the nitrosation of secondary amines (346). the effect of solvent acidity On diazotization (347) and the reactivity of diazonium salts (1691). Therefore, a complete rationalization of the reactivity of amino azaaromatics would be timelv. [Pg.68]

Amino-5-methylthiazole does not react with diazotized p-nitroaniline in solutions acidified with acetic or hydrochloric acid (391). 2-Amino-4,5-dimethylthiazole with the diazonium salts of para-substituted anilines, however, gives product 193, involving reactivity of the exocyclic nitrogen (Scheme 122) (399). [Pg.76]

The high reactivity of the 5-position in 1.3-selenazoles toward electrophilic substitution was also observed on azocoupling. By reacting molar quantities of an aqueous solution of a diazonium salt with an ethanolic solution of a 2-arylamino selenazole. for example, the corresponding 2-arylamino-5 azoselenazoles are formed in a smooth reaction (100). They deposit from the deeply colored solution and form intenselv red-colored compounds after their recrystallization from a suitable solvent (Scheme 36l. [Pg.246]

Bulka et al. (43) have demonstrated the electrophilic reactivity of selenazoles possessing an hydrazonc in the 2-position and nonsubstituted in the 5-position toward diazonium salt to give 5-phenylazo derivatives preferentially. For example, the main product of the coupling of 2-benzylidene hydrazino-4-phenylselenazole with diazo-o-phenetidine is the 5-(o-ethoxyphenylazo)-selenazole (Scheme 371 ruby red prisms, m.p. 206°C. yield 67"o). A formazan is obtained as by-product. (See Section III.6) (43). [Pg.246]

Only 2-aminothiazole derivatives are reactive enough toward diazonium salts to undergo the diazo-coupling reaction. The azo group fixes exclusively on the 5-position when it is free (Scheme 62) (351). [Pg.103]

A reaction of aryl diazonium salts that does not involve loss of nitrogen takes place when they react with phenols and arylamines Aryl diazonium ions are relatively weak elec trophiles but have sufficient reactivity to attack strongly activated aromatic rings The reaction is known as azo coupling two aryl groups are joined together by an azo (—N=N—) function... [Pg.950]

The alternative approach is to pad the fabric with the alkaline naphthol and dry, foUowed by printing directly onto this prepared fabric diazonium salts or stabilized diazonium salts. Coupling is instant and the only further treatment needed is to remove aU the uncoupled naphthol and surface azo pigment in a subsequent washing treatment. Because the choice of colors is limited from one naphthol component, other shades are obtained by using other classes of dye alongside the azoic colors, eg, reactives. This approach is widely used in the production of African prints. [Pg.372]

Diazo coupling is expected to occur only with highly reactive systems, and experiment bears this out. Diazonium ions couple with the anions of N-unsubstituted imidazoles at the 2-position (e.g. 125 yields 126) and with indazoles (127) in the 3-position. In general, other azoles react only when they contain an amino, hydroxyl, or potential hydroxyl group, e.g. the 4-hydroxypyrazole (128), the triazolinone (129) and the thiazolidinedione (130) (all these reactions occur on the corresponding anions). [Pg.59]

Pyridine-2- and -4-diazonium ions are far less stable than benzenediazonium ions. Azolediazonium salts generally show intermediate stability provided diazotization is carried out in concentrated acid, many of the usual diazonium reactions succeed. Indeed, azolediazonium salts are often very reactive in coupling reactions. [Pg.96]

The behaviour of pyrazoles towards nitrosation is similar to their behaviour described above towards diazo coupling, i.e. aminopyrazoles and pyrazolones readily react with nitrosation agents, like alkyl nitrites (81FES1019), to afford stable nitroso derivatives. Some simple nitrosopyrazoles have been isolated, for example the blue-green 3,5-dimethyl-4-nitrosopyrazole, and many others have been proposed as reactive intermediates in the direct conversion of pyrazoles into diazonium or diazo derivatives (Scheme 25) (B-76MI40402). [Pg.242]

With l,3-dimethyl-2,l-benzisoxazolium salts, however, considerable reactivity has been reported. Condensation occurs readily with aldehydes, ketones, orthoesters and diazonium salts to yield styryl, cyanine and azo compounds, respectively (78JOC1233). In the presence of triethylamine, dimerization was observed, and the reactions of the cation were considered to involve the intermediacy of the anhydro base (77JOC3929). [Pg.51]

Phenyl cations are formed by thermal decomposition of aryl diazonium ions. The cation is so extremely reactive that under some circumstances it can recrqrture the nitrogen... [Pg.289]

While A -dimethylaniline is an extremely reactive aromatic substrate and is readily attacked by such weak electrophiles as aiyl diazonium ions and nitrosonium ion, this reactivity is greatly diminished by introduction of an alkyl substituent in the ortho position. Explain. [Pg.597]

Trifluoromethyl-substituted diazonium betaines [176]. Synthetic routes to trifluoromethyl-substituted diazo alkanes, such as 2,2,2-trifluorodiazoethane [ 177, 7 78, 179] and alkyl 3,3,3-trifluoro-2-diazopropionates [24], have been developed Rhodium-catalyzed decomposition of 3,3,3-tnfluoro-2-diazopropionates offers a simple preparative route to highly reactive carbene complexes, which have an enormous synthetic potential [24] [3-1-2] Cycloaddition reactions were observed on reaction with nitnles to give 5-alkoxy-4-tnfluoromethyloxazoles [750] (equation 41)... [Pg.862]

Examine the geometries (in particular, CN bond distances) of methyl diazonium, tert-butyl diazonium and phenyl diazonium ions. Which, if any, of these ions is best described as a weak complex between a cation and N2 Which is furthest away from this description Is your result consistent with the observed reactivity patterns Explain. [Pg.208]

Next, consider the reactivity of phenyl diazonium ion. Are either of the reactions shown above consistent with nucleophilic attack at the ion s most electron-poor site Examine the lowest-unoccupied molecular orbital (LUMO) of phenyl diazonium ion. What electrophilic sites are identified by the LUMO Are either of the reactions shown above consistent with an orbital-controlled addition ... [Pg.209]

The reactivity of the 5-position of 2-aminothiophene in diazo coupling, which is present also in the acylated derivatives, complicates the formation of a diazonium salt from 2-aminothiophene. Thus Steinkopf and Miiller obtained only an azo dyestuff, although they proved, through the isolation of small amounts of 2-thienyl diazonium chloride, the diazotizability of 2-aminothiophene which had earlier been denied. However, recent Russian work claims the preparation of 2-thienyldiazonium chloride by treating the double salt in 10% hydrochloric acid with sodium nitrite. Amazingly high yields (over 90%) of azo compounds were then achieved by coupling the diazonium salt solution with y9-naphtol, w-toluidine or with the 2-aminothiophene double salt. These authors have also studied the... [Pg.85]

Tire only known example of 1,2,3-triazepine (32) behaves as a reactive cyclic triazene with a high degree of masked diazonium character [74JCS(P1)1248]. 277-1,2,4-Triazepine (33a) has been obtained from the 577-tautomer (33b) by a 1,5-hydrogen shift (74CC45,74TL2303), this being one of these rare cases that an antiaromatic tautomer 33a is more stable than the nonaromatic one 33b. But it must be noted that these 277-1,2,4-tri-... [Pg.8]

Aliphatic primary amines also undergo the diazotization reaction in weakly acidic solution however the resulting aliphatic diazonium ions are generally unstable, and easily decompose into nitrogen and highly reactive carbenium ions. The arenediazonium ions are stabilized by resonance with the aromatic ring ... [Pg.87]

Arylamines are converted by diazotization with nitrous acid into arenediazonium salts, ArN2+ X-. The diazonio group can then be replaced by many other substituents in the Sandmeyer reaction to give a wide variety of substituted aromatic compounds. Aryl chlorides, bromides, iodides, and nitriles can be prepared from arenediazonium salts, as can arenes and phenols. In addition to their reactivity toward substitution reactions, diazonium salts undergo coupling with phenols and arylamines to give brightly colored azo dyes. [Pg.958]

Bromination of 136 in methanol gave the 3-bromo derivative, identical with the product of Sandmeyer reaction of the 3-diazonium salt. When the reactive 3-position was blocked, electrophilic bromination would not take place (66JOC265). Chlorination appears to occur by addition [83AHC(34)79], and perhalides are known [84MI25 90AHC(47)1]. Activating substituents are able to induce some bromination in the pyridine ring. [Pg.316]

This diazotization is typical of many aminoazoles the diazonium ions formed are relatively strong acids. The pATa values of five di-, tri-, and tetrazolediazonium ions are reported to be between 3 and 4, i. e., about 10 units lower (more acidic) than those of the respective unsubstituted heterocycles (Vilarrasa et al., 1974). Therefore, deprotonation of the diazonium ion is easy and, depending on reaction conditions, yields either the diazonium salt or its conjugate base, the diazo compound. The electrophilic reactivity of the P nitrogen atom in the diazo group of the base is lower than the reactivity of the diazonio group of the cation (Diener and Zollinger, 1986 see Sec. 12.2). [Pg.16]

The high reactivity of heterocyclic diazonium ions in azo coupling reactions is the reason why in some cases the primary diazotization products cannot be isolated. For example, diazotization of 2-methyl-5-aminotetrazole (2.14) directly yields the triazene 2.15, i. e., the N-coupling product, since the intermediate diazonium ion is reactive enough to give the N-coupling product with the parent amine even under strongly acidic conditions (Scheme 2-8 Butler and Scott, 1967). [Pg.18]


See other pages where Diazonium reactivity is mentioned: [Pg.426]    [Pg.417]    [Pg.417]    [Pg.173]    [Pg.97]    [Pg.40]    [Pg.551]    [Pg.633]    [Pg.761]    [Pg.587]    [Pg.838]    [Pg.498]    [Pg.154]    [Pg.252]    [Pg.128]    [Pg.132]    [Pg.51]    [Pg.96]    [Pg.126]    [Pg.145]    [Pg.288]   
See also in sourсe #XX -- [ Pg.271 ]

See also in sourсe #XX -- [ Pg.224 ]

See also in sourсe #XX -- [ Pg.224 ]




SEARCH



Reactive properties of aryl diazonium salts

© 2024 chempedia.info