Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diastereofacial selectivity chiral auxiliaries

The principle discussed in the previous section can be used in asymmetric synthesis, utilizing a chiral auxiliary in the 2-position of the cyclopentenone in order to achieve diastereofacial selectivity. Three types of chiral auxiliaries, the 4-methylphenylsulfinyl (E), menthyloxycar-bonyl (C), and 8-phenylmenthyloxycarbonyl groups (D), have been studied32. [Pg.941]

Addition to Chiral Enimines I.5.3.I.I. Diastereofacial Selectivity Enimines Bearing a Chiral Auxiliary... [Pg.1007]

It has been shown that the sulfinyl group present as chiral auxiliary either in dienophiles or in dienes is very useful for controlling the enantio- and diastereofacial selectivity in the asymmetric Diels-Alder reaction [43]. A wide variety of enantiomerically pure cyclohexadienedicarboxylates has been produced by cycloaddition of the sulfinylmaleate 39 with several dienes under catalyzed... [Pg.112]

A highly diastereofacial /7-selective aldol reaction by using ester derivatives of norephedrine as a chiral auxiliary has been recently reported by Kurosu and Lorca (Scheme 38).138 This practical and general method proceeds via initial ( )-selective substrate enolization and provides access to a broad range of optically active 2-alkyl-3-hydroxycarboxylic acid esters of type 91. [Pg.422]

As with the above pyrrolidine, proline-type chiral auxiliaries also show different behaviors toward zirconium or lithium enolate mediated aldol reactions. Evans found that lithium enolates derived from prolinol amides exhibit excellent diastereofacial selectivities in alkylation reactions (see Section 2.2.32), while the lithium enolates of proline amides are unsuccessful in aldol condensations. Effective chiral reagents were zirconium enolates, which can be obtained from the corresponding lithium enolates via metal exchange with Cp2ZrCl2. For example, excellent levels of asymmetric induction in the aldol process with synj anti selectivity of 96-98% and diastereofacial selectivity of 50-200 116a can be achieved in the Zr-enolate-mediated aldol reaction (see Scheme 3-10). [Pg.144]

In most reported cases, the covalently bound chiral auxiliary has been attached to the dienophile via an acyl linkage, but there are also many examples known in which the auxiliary has been attached to the diene via an acyl, alkyl or heteroatom linkage, the first example of the latter being Trost s diene147. Lewis acids are often added to the reaction mixtures when the chiral auxiliary attached to the dienophile contains an additional Lewis basic site. This is not only to enhance the reaction rate, but especially to enhance the diastereofacial selectivity by complexing to the dienophile in a bidentate fashion. This makes the dienophile more conformationally rigid. [Pg.381]

Cadogan and coworkers160 developed a fructose-derived l,3-oxazin-2-one chiral auxiliary which they applied in the Diels-Alder reactions of its iV-enoyl derivatives 246 with cyclopentadiene using diethylaluminum chloride as the Lewis acid catalyst. The reactions afforded mixtures of endo 247 and exo 248 (equation 68). The catalyst binds to the chiral dienophile in a bidentate fashion (co-ordination to both carbonyl groups). As a consequence, the dienophile is constrained to a rigid conformation which accounts for the almost complete diastereofacial selectivities observed. [Pg.386]

Brimble and coworkers172 reported the asymmetric Diels-Alder reactions between quinones 265 bearing a menthol chiral auxiliary and cyclopentadiene (equation 73). When zinc dichloride or zinc dibromide was employed as the Lewis acid catalyst, the reaction proceeded with complete endo selectivity, but with only moderate diastereofacial selectivity affording 3 1 and 2 1 mixtures of 266 and 267 (dominant diastereomer unknown), respectively. The use of stronger Lewis acids, such as titanium tetrachloride, led to the formation of fragmentation products. Due to the inseparability of the two diastereomeric adducts, it proved impossible to determine which one had been formed in excess. [Pg.391]

Hansen and colleagues177 used (+)-pantolactone as a chiral auxiliary to achieve asymmetric induction in the first step toward their synthesis of d.v-perhydroisoq uinol inc 278. The titanium tetrachloride catalyzed reaction between 1,3-cyclohexadiene (275) and chiral acrylate 276 proceeded with high diastereofacial selectivity to give 277 (94% de) in 75% yield (equation 77). [Pg.394]

Murray and colleagues199 developed some 2,5-diketopiperazines as new chiral auxiliaries and examined their asymmetric induction in the Diels-Alder reactions of their A-acryloyl derivatives with several dienes. Some of their results with dienophile 320 have been summarized in Table 19 (equation 89). When the benzyl group on 320 was substituted by an isopropyl or /-butyl group, the diastereofacial selectivity dropped dramatically. It was proposed that tv-tt stacking between the phenyl group and the electron-poor double bond provided a more selective shielding of one face of the double bond in this special case. [Pg.402]

It is worthwhile emphasising that the abovementioned syntheses using chiral auxiliaries covalently bound to the substrate bearing the prochiral center prior to the creation of the new asymmetric centre mean converting the problem of enantiofacial recognition into a problem of diastereofacial selectivity i.e. the pair of enantiomers 41 and 42 are actually obtained from hydrolysis of two different diastereomers 39 and 40. In fact, "direct enantioselectivity" can only be attained by using an external chiral catalyst,23 as shown in Figure 9.1 [26]. [Pg.252]

Darzens reaction of (-)-8-phenylmethyl a-chloroacetate (and a-bromoacetate) with various ketones (Scheme 2) yields ctT-glycidic esters (28) with high geometric and diastereofacial selectivity which can be explained in terms of both open-chain or non-chelated antiperiplanar transition state models for the initial aldol-type reaction the ketone approaches the Si-f ce of the Z-enolate such that the phenyl ring of the chiral auxiliary and the enolate portion are face-to-face. Aza-Darzens condensation reaction of iV-benzylideneaniline has also been studied. Kinetically controlled base-promoted lithiation of 3,3-diphenylpropiomesitylene results in Z enolate ratios in the range 94 6 (lithium diisopropylamide) to 50 50 (BuLi), depending on the choice of solvent and temperature. ... [Pg.356]

The formation of spirocyclopropanes from the reaction of diazodiphenylmethane and ( )-8-phenylmenthyl esters of acrylic acid and methyl fumarate occurred with a modest level of diastereofacial selectivity (136). In contrast, diastereoselectivities of 90 10 were achieved in the cycloadditions of diazo(trimethylsilyl)methane with acrylamides 65 derived from camphor sultam as the chiral auxiliary (137) (Scheme 8.16). Interestingly, the initial cycloadducts 66 afforded the nonconjugated A -pyrazolines 67 on protodesilylation the latter were converted into optically active azaproline derivatives 68. In a related manner, acrylamide 69 was converted into A -pyrazolines 70a,b (138). The major diastereoisomer 70a was used to synthesize indolizidine 71. The key step in this synthesis involves the hydrogenolytic cleavage of the pyrazoline ring. [Pg.554]

High diastereofacial selectivities are observed in cycloadditions and Michael additions with ot,(3-unsaturated esters having chiral heterocyclic auxiliary at the p-position, as shown in Schemes 11.20, 11.21, and 11.25, and cannot be well-explained using Kozikowski s awfi-periplanar model (124,125) or Houk s inside alkoxy model (126,127). Both the anti-periplanar conformation and the syn-periplanar conformation of the acceptors participate in the transition structures, depending on nonbonding interactions in the dipole-chiral auxiliary pair (121). [Pg.778]

Chiral cyclobutanes can be prepared by cycloaddition of alkenes substituted with one or more chiral auxiliary groups. A diastereofacial selectivity of 95% was observed in the diethylalu-minum chloride catalyzed cycloaddition of 1,1-dimethoxyethene (36) with ( — )-dimenlhyl-3-yl fumarate (37).16 The chiral cyclobutane 38 has been used as an intermediate in the synthesis of carbocyclic oxetanocin analogs. [Pg.146]

Lewis acid-catalyzed stereoselective addition of crotylsilanes to chiral 74 has been studied in detail111,112. The presence of the chiral auxiliary at C2 (e.g. p-tolylsulfinyl or menthoxy carbonyl group) induces the diastereofacially selective addition of cyclopentenones with crotylsilanes. Thus, ( )-crotylsilane favors the erythro product, whilst (Z)-isomer favors the threo product. High enantioselectivity is observed in both reactions (equation 48). In a similar manner, conjugated addition of allylsilane to 75 proceeds with high efficiency (equation 49)113. Interestingly, the yield and enantiomeric excess of the product is dependent on the amount of TiCL used and the best selectivity... [Pg.1812]

Fujisawa et al. [89] have reported the stereodivergent synthesis of spiro-[S-1 act a ms 64, 65 (Scheme 17) by reaction of lithium or titanium ester enolates 62 with single chiral imines 63 by taking advantage of different coordination states of the enolate metals. Almost complete reversal of the diastereofacial-discrimination with respect to the C-4 of the (3-lactam skeleton has been attained in this reaction coupled with flexibility in the selection of the enolates and ready removal of the chiral auxiliary. [Pg.66]

Asymmetric aldol reactions5 (11, 379-380). The lithium enolate of the N-propionyloxazolidinone (1) derived from L-valine reacts with aldehydes with low syn vs. anti-selectivity, but with fair diastereofacial selectivity attributable to chelation. Transmetallation of the lithium enolate with ClTi(0-i-Pr)3 (excess) provides a titanium enolate, which reacts with aldehydes to form mainly the syn-aldol resulting from chelation, the diastereomer of the aldol obtained from reactions of the boron enolate (11, 379-380). The reversal of stereocontrol is a result of chelation in the titanium reaction, which is not possible with boron enolates. This difference is of practical value, since it can result in products of different configuration from the same chiral auxiliary. [Pg.257]

In 1992 Ghosh and co-workers provided the first example of the utility of rigid cis-1 -amino-2-indanol-derived oxazolidinone 36 as the chiral auxiliary in the asymmetric. vv//-aldol reaction.60-61 Aldol condensation of the boron enolate of 37 with various aldehydes proceeded with complete diastereofacial selectivity. Effective removal and recovery of the chiral auxiliary was carried out under mild hydrolysis conditions (Scheme 24.6). As both enantiomers of the chiral auxiliary were readily available, both enantiomers of the. yyn-aldol could be prepared with equal asymmetric induction. [Pg.466]

The alternative strategy of using d,v-aminoindanol as a chiral auxiliary on the Michael donor has also been explored.81 Chiral amide enolates were reacted with a,P-unsaturated ester 70, and the resultant adducts were reduced and cyclized to 8-lactones 73 to determine the facial selectivity on the Michael acceptor. It is interesting that protected amino alcohol 71 did not lead to significant diastereofacial discrimination, whereas 72 afforded lactone 73 with high 4-(,S )-selectivity (Scheme 24.15). [Pg.472]

Saigo and co-workers reasoned that, by analogy, high levels of diastereofacial discrimination could be achieved in the Lewis acid-mediated Diels-Alder reaction of dienes with oxazolidinone 108-derived dienophiles. Indeed, excellent regioselectivities (endo. exo) and diastereoselectivities were reached in the Diels-Alder reaction of 109 with cyclic and acyclic dienes using Et2AlCl as the activator (Scheme 24.28).107 The selectivities obtained actually surpassed those reported with cis-1 -amino-2-indanol 1 as the chiral auxiliary (93% de) (see Scheme 24.16).82 The additional bulk... [Pg.481]

All the models presented for the diastereofacial selectivity in the case of carbonyl compounds are still valid for the imines. However, it has to be kept in mind that, due to the substitution on the nitrogen atom, imines can possess an additional chiral auxiliary which... [Pg.1346]

The diastereofacial selectivity is controlled by the asymmetric center at C4 of the chiral auxiliary (Scheme I). [Pg.362]

Chiral Auxiliary for Asymmetric Induction. Numerous derivatives of (—)-8-phenylmenthol have been utilized for asymmetric induction studies. These include inter- and intramolecular Diels-Alder reactions, dihydroxylations, and intramolecular ene reactions of a,p-unsaturated 8-phenylmenthol esters. These reactions usually proceed in moderate to good yield with high diastereofacial selectivity. a-Keto esters of 8-phenylmenthol (see 8-Phenylmenthyl Pyruvate) have been used for asymmetric addition to the keto group, as well as for asymmetric [2 -F 2] photoadditions and nucleophilic alkylation. Ene reactions of a-imino esters of 8-phenylmenthol with alkenes provide a direct route to a-amino acids of high optical purity. Vinyl and butadienyl ethers of 8-phenylmenthol have been prepared and the diastereofacial selectivity of nitrone and Diels-Alder cycloadditions, respectively, have been evaluated. a-Anions of 8-phenylmenthol esters also show significant diastereofacial selectivity in aldol condensations and enantiose-lective alkene formation by reaction of achiral ketones with 8-phenylmenthyl phosphonoacetate gives de up to 90%. ... [Pg.471]


See other pages where Diastereofacial selectivity chiral auxiliaries is mentioned: [Pg.27]    [Pg.613]    [Pg.982]    [Pg.80]    [Pg.446]    [Pg.459]    [Pg.383]    [Pg.242]    [Pg.250]    [Pg.449]    [Pg.208]    [Pg.418]    [Pg.121]    [Pg.439]    [Pg.673]    [Pg.674]    [Pg.691]    [Pg.439]    [Pg.603]    [Pg.472]    [Pg.476]    [Pg.288]    [Pg.612]   


SEARCH



Chiral selection

Chirality auxiliaries

Diastereofacial selection

Diastereofacial selectivity

© 2024 chempedia.info