Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Diacylglycerol lipids

Let us first consider the lipid molecular structures required. First is the hydrophobic matching. The length of the hydrophobic chain determines the thickness of the hydrophobic part of the lipid bilayer, this should correspond closely to the dimension of the native membrane. As most biological membranes contain diacylglycerol lipids with hydrophobic chain lengths of 16 18 carbon atoms. Thus, synthetic lipids should possess relatively long hydrocarbon chain length, e.g., 16-18 carbon atoms. [Pg.141]

Compton DL, Kenar JA, Laszlo JA, Felker FC. 2007. Starch-encapsulated, soy-based, ultraviolet-absorbing composites with feruloylated monoacyl- and diacylglycerol lipids. Indust Crop Prod 25 17-23. [Pg.74]

FIGURE 12.4 (A) Diagrammatic representation of the separation of major simple lipid classes on silica gel TLC — solvent system hexane diethylether formic acid (80 20 2) (CE = cholesteryl esters, WE = wax esters, HC = hydrocarbon, EEA = free fatty acids, TG = triacylglycerol, CHO = cholesterol, DG = diacylglycerol, PL = phospholipids and other complex lipids). (B) Diagrammatic representation of the separation of major phospholipids on silica gel TLC — solvent sytem chloroform methanol water (70 30 3) (PA = phosphatidic acid, PE = phosphatidylethanolamine, PS = phosphatidylserine, PC = phosphatidylcholine, SPM = sphingomyelin, LPC = Lysophosphatidylcholine). [Pg.311]

Lipids are easily detected in negative ion mode on account of the peaks of deprotonated stearic, palmitic and arachidic acids. In positive ion mode, mono- and diacylglycerol are also detected. All these lipids show the same distribution all over the sample. An interesting point is the predominance of stearic acid. This could be consistent with the use of shea butter or karite in the recipe of the patina, products commonly used in West Africa. [Pg.453]

The other activity associated with transmembrane receptors is phospholipase C. Phosphatidyl inositol is a membrane phospholipid that after phosphorylation on the head group is found in the membrane as a phos-photidylinostitol bis phosphate. Phospholipase C cleaves this into a membrane associated diacylglycerol (the lipid part) and inositol trisphosphate (IP3, the soluble part). Both play a later role in elevating the level of the second messenger, Ca2+. [Pg.142]

Itani SI, Ruderman NB, Schmieder F and Boden G. 2002. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 51(7) 2005-2011. [Pg.172]

Free arachidonic acid, along with diacylglycerols and free docosahexaenoic acid, is a product of membrane lipid breakdown at the onset of cerebral ischemia, seizures and other forms of brain trauma 585... [Pg.575]

Free arachidonic acid, along with diacylglycerols and free docosahexaenoic acid, is a product of membrane lipid breakdown at the onset of cerebral ischemia, seizures and other forms of brain trauma. Because polyunsaturated fatty acids are the predominant FFA pool components that accumulate under these conditions, this further supports the notion that fatty acids released from the C2 position of membrane phospholipids are major contributors to the FFA pool, implicating PLA2 activation as the critical step in FFA release [1,2] (Fig. 33-6). [Pg.585]

Topham, M. K. and Prescott, S. M. Mammalian diacylglycerol kinases, a family of lipid kinases with signaling functions./. Biol. Chem. 274 11447-11450,1999. [Pg.590]

Rodriguez de Turco, E. B., Tan, W., Topham, M. K., Sakane, F., Marcheselli, V. L., Chen, C., Taketomi, A., Prescott, S. and Bazan N. G. Diacylglycerol kinase epsilon regulates seizures susceptibility and long-term potentiation through inositol lipid signaling. Proc. Natl Acad. Sci. U.S.A. 98 4740-4745, 2001. [Pg.590]

It has been found that the catalytic activity of PKC is enhanced by a lipid component of the cell membrane, namely phosphatidylserine. This activity is further stimulated by sn-1,2-diacylglycerol. Oleic acid also activates the enzyme in the presence of 1,2-diacylglycerol, and thus it is presumed to mimic phosphatidylserine. In order to identify that modulating binding site for oleic acid on PKC, a photoaffinity analogue was devised. A carbene generating photophore, diazirine was placed in the apolar terminus of the unsaturated fatty acid ligand (30, Fig. 12). The synthesis and the photochemical activation properties were reported by Ruhmann and Wentrup [113]. [Pg.202]

DORMANN, P., HOFFMANN-BENNING, S., BALBO, I., BENNING, C., Isolation and characterization of an Arabidopsis mutant deficient in the thylakoid lipid digalactosyl diacylglycerol, Plant Cell, 1995, 7, 1801-1810. [Pg.80]

Figure 4.13. Model of peptide initiation of mast secretion. Insertion of the hydrophobic region of the peptide into the lipid bilayer properly orients the basic (+) groups at the N-terminus for binding to negatively charged membrane components. As a result, there is activation of the G protein complex with the subsequent generation of inositol triphosphate (IP ) and diacylglycerol (DAG). These intermediates then stimulate the mobilization of cellular Ca and possibly the transient influx of extracellular Ca as well as the activation ofprotein kinase C. As a consequence, the level of intracellular free ionized Ca is maintained at an elevated state. The end result is the exocytotic extrusion of secretory granules. Figure 4.13. Model of peptide initiation of mast secretion. Insertion of the hydrophobic region of the peptide into the lipid bilayer properly orients the basic (+) groups at the N-terminus for binding to negatively charged membrane components. As a result, there is activation of the G protein complex with the subsequent generation of inositol triphosphate (IP ) and diacylglycerol (DAG). These intermediates then stimulate the mobilization of cellular Ca and possibly the transient influx of extracellular Ca as well as the activation ofprotein kinase C. As a consequence, the level of intracellular free ionized Ca is maintained at an elevated state. The end result is the exocytotic extrusion of secretory granules.
Various combinations of hexane or light petroleum (40-60°C, bp) and diethyl ether, usually with a small amount of acetic acid (e.g. 90 10 1) or diisopropyl ether and acetic acid (98.5 1.5) are commonly used. The greater mobility is demonstrated by cholesterol esters followed by triacylglycerols, free fatty acids, cholestorol, diacylglycerols and monoacylglycerols, with complex polar lipids remaining unmoved. Double development in two solvents, e.g. diisopropyl... [Pg.432]

The physiological functions of carboxylesterases are still partly obscure but these enzymes are probably essential, since their genetic codes have been preserved throughout evolution [84] [96], There is some evidence that microsomal carboxylesterases play an important role in lipid metabolism in the endoplasmic reticulum. Indeed, they are able to hydrolyze acylcamitines, pal-mitoyl-CoA, and mono- and diacylglycerols [74a] [77] [97]. It has been speculated that these hydrolytic activities may facilitate the transfer of fatty acids across the endoplasmic reticulum and/or prevent the accumulation of mem-branolytic natural detergents such as carnitine esters and lysophospholipids. Plasma esterases are possibly also involved in fat absorption. In the rat, an increase in dietary fats was associated with a pronounced increase in the activity of ESI. In the mouse, the infusion of lipids into the duodenum decreased ESI levels in both lymph and serum, whereas an increase in ES2 levels was observed. In the lymph, the levels of ES2 paralleled triglyceride concentrations [92] [98],... [Pg.51]


See other pages where Diacylglycerol lipids is mentioned: [Pg.261]    [Pg.227]    [Pg.261]    [Pg.227]    [Pg.1078]    [Pg.242]    [Pg.243]    [Pg.823]    [Pg.711]    [Pg.966]    [Pg.1006]    [Pg.1007]    [Pg.51]    [Pg.197]    [Pg.301]    [Pg.310]    [Pg.320]    [Pg.518]    [Pg.8]    [Pg.43]    [Pg.148]    [Pg.177]    [Pg.275]    [Pg.347]    [Pg.347]    [Pg.348]    [Pg.423]    [Pg.576]    [Pg.825]    [Pg.16]    [Pg.172]    [Pg.82]    [Pg.389]    [Pg.410]   
See also in sourсe #XX -- [ Pg.357 ]




SEARCH



Diacylglycerols

Lipid diacylglycerols

© 2024 chempedia.info