Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Devices amorphous

Amorphous Silicon. Amorphous alloys made of thin films of hydrogenated siUcon (a-Si H) are an alternative to crystalline siUcon devices. Amorphous siUcon ahoy devices have demonstrated smah-area laboratory device efficiencies above 13%, but a-Si H materials exhibit an inherent dynamic effect cahed the Staebler-Wronski effect in which electron—hole recombination, via photogeneration or junction currents, creates electricahy active defects that reduce the light-to-electricity efficiency of a-Si H devices. Quasi-steady-state efficiencies are typicahy reached outdoors after a few weeks of exposure as photoinduced defect generation is balanced by thermally activated defect annihilation. Commercial single-junction devices have initial efficiencies of ca 7.5%, photoinduced losses of ca 20 rel %, and stabilized efficiencies of ca 6%. These stabilized efficiencies are approximately half those of commercial crystalline shicon PV modules. In the future, initial module efficiencies up to 12.5% and photoinduced losses of ca 10 rel % are projected, suggesting stabilized module aperture-area efficiencies above 11%. [Pg.472]

The detector setup consists of four 256 x 256 pixel amorphous silicon technology sensor flat panels with 0.75 x 0.75 mm pixel size, having an active area of 192 x 192 mm [5j. These sensors are radiation sensitive up to 25 MeV and therefor well suited for detecting the LINAC radiation. The four devices are mounted onto a steel Irame each having the distance of one active area size from the other. With two vertical and two horizontal movements of the frame it is possible to scan a total area of about 0.8 x 0.8 m with 1024 x 1024 pixel during four independent measurements. [Pg.493]

Silicon is prepared commercially by heating silica and carbon in an electric furnace, using carbon electrodes. Several other methods can be used for preparing the element. Amorphous silicon can be prepared as a brown powder, which can be easily melted or vaporized. The Gzochralski process is commonly used to produce single crystals of silicon used for solid-state or semiconductor devices. Hyperpure silicon can be prepared by the thermal decomposition of ultra-pure trichlorosilane in a hydrogen atmosphere, and by a vacuum float zone process. [Pg.33]

The success has been primarily due to the developments that occurred in the eady 1970s (3) at the University of Dundee (United Kingdom) where it was demonstrated that a device-quaUty amorphous siUcon semiconductor (i -Si) could be produced with the following features low concentration of defects, high photosensitivity, abiUty to be doped, and no size limitation. [Pg.357]

There is another class of amorphous semiconductors based on chalcogens which predate the developments that have occurred in i -Si. Because their use has been limited, eg, to switching types of devices and optical memories, this discussion is restricted to the optoelectronic properties of i -Si-based alloys and their role in some appHcations. [Pg.357]

The tetrahedrally bonded materials, such as Si and Ge, possess only positional disorder however, materials of this type exhibit high density of defect states (DOS). It is only with the addition of elements such as hydrogen and/or a halogen, typically fluorine, that the DOS is reduced to a point such that electronic device appHcations emerge. These materials contain up to - 10 atomic % hydrogen, commonly called hydrogenated amorphous siHcon (i -Si H). [Pg.357]

The optoelectronic properties of the i -Si H films depend on many deposition parameters such as the pressure of the gas, flow rate, substrate temperature, power dissipation in the plasma, excitation frequency, anode—cathode distance, gas composition, and electrode configuration. Deposition conditions that are generally employed to produce device-quahty hydrogenated amorphous Si (i -SiH) are as follows gas composition = 100% SiH flow rate is high, --- dO cm pressure is low, 26—80 Pa (200—600 mtorr) deposition temperature = 250° C radio-frequency power is low, <25 mW/cm and the anode—cathode distance is 1-4 cm. [Pg.359]

Another parameter of relevance to some device appHcations is the absorption characteristics of the films. Because the k quantum is no longer vaUd for amorphous semiconductors, i -Si H exhibits a direct band gap (- 1.70 eV) in contrast to the indirect band gap nature in crystalline Si. Therefore, i -Si H possesses a high absorption coefficient such that to fully absorb the visible portion of the sun s spectmm only 1 p.m is required in comparison with >100 fim for crystalline Si Further improvements in the material are expected to result from a better understanding of the relationship between the processing conditions and the specific chemical reactions taking place in the plasma and at the surfaces which promote film growth. [Pg.360]

Figure 4 shows the basic constmetion of the devices used in different appHcations, involving the deposition of multilayers of i -SiH of intrinsic (/), doped ), and closely aUied films, such as amorphous siHcon nitride, SiN, and transparent conducting oxide (TCO). As in crystalline... [Pg.360]

Fig. 4. Some electronic device applications using amorphous silicon (a) solar cell, (b) thin-fiLm transistor, (c) image sensor, and (d) nuclear particle detector. Fig. 4. Some electronic device applications using amorphous silicon (a) solar cell, (b) thin-fiLm transistor, (c) image sensor, and (d) nuclear particle detector.
Further developments in this area have included the neparation of several additional N,N -diaryl indolo[3,2-h]carbazoles with substituents such as m-tolyl, ffi-anisoyl, or triarylamine-containing species. Like 221, these compounds, possessing excellent hole-transport properties, also occurred in stable amorphous states and displayed high glass-transition temperatures. LED devices involving these systems were also constructed and showed promising characteristics [OOSMO11-112)42]]. [Pg.46]

The devices are claimed to ensure that magnetically treated water keeps minerals in a soft amorphous powder form instead of... [Pg.338]

Amorphous Silicon. Amorphous silicon is generally deposited by Reaction (4) at a deposition temperature of 560°C and at low pressure (ca. 1 Torr).P l Helium RF plasma CVD is also commonly used, especially in the production of solar photovoltaic devices. [Pg.222]

A thin film of tin oxide with a rough texture, produced by MOCVD from tetramethyl tin, (CH3)4Sn, deposited on an amorphous silicon cell provides a light-trapping surface, which enhances the efficiency of the device. [Pg.395]

Deposition has been carried out on architectural glass yielding single-junction amorphous silicon with an efficiency of 13% in the laboratory, but with lower efficiency in production devices. An atmospheric-pressure deposition system in shown in Fig. 15.5. The gas injection device is shown in Fig. 15.6. [Pg.396]


See other pages where Devices amorphous is mentioned: [Pg.103]    [Pg.103]    [Pg.245]    [Pg.281]    [Pg.478]    [Pg.138]    [Pg.392]    [Pg.408]    [Pg.424]    [Pg.295]    [Pg.51]    [Pg.51]    [Pg.336]    [Pg.525]    [Pg.21]    [Pg.235]    [Pg.525]    [Pg.157]    [Pg.130]    [Pg.133]    [Pg.140]    [Pg.1088]    [Pg.260]    [Pg.270]    [Pg.7]    [Pg.109]    [Pg.100]    [Pg.104]    [Pg.244]    [Pg.249]    [Pg.252]    [Pg.565]    [Pg.569]    [Pg.570]    [Pg.626]    [Pg.727]    [Pg.280]   
See also in sourсe #XX -- [ Pg.123 ]




SEARCH



Amorphous silicon device technology

Applications of amorphous silicon devices

© 2024 chempedia.info