Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Detector pulse height

Nal Scsn illation Detector Pulse Height Spectrum of an Aluminum Suitcase... [Pg.13]

Figure Bl.10.7. Electron impact ionization coincidence experiment. The experiment consists of a source of incident electrons, a target gas sample and two electron detectors, one for the scattered electron, the other for the ejected electron. The detectors are coimected tlirough preamplifiers to the inputs (start and stop) of a time-to-amplitiide converter (TAC). The output of the TAC goes to a pulse-height-analyser (PHA) and then to a nuiltichaimel analyser (MCA) or computer. Figure Bl.10.7. Electron impact ionization coincidence experiment. The experiment consists of a source of incident electrons, a target gas sample and two electron detectors, one for the scattered electron, the other for the ejected electron. The detectors are coimected tlirough preamplifiers to the inputs (start and stop) of a time-to-amplitiide converter (TAC). The output of the TAC goes to a pulse-height-analyser (PHA) and then to a nuiltichaimel analyser (MCA) or computer.
A gamma-ray spectmm is produced nondispersively by pulse-height (multichannel) analysis using scintillation or semiconductor detectors. Resolving power, typically - 100 at 100 keV and - 700 at 2 MeV, is quite modest compared with that achievable in other spectral regions, but is sufficient to identify nucHdes unambiguously. [Pg.320]

Pulse-height selection.6 In some detectors, the mean height of the... [Pg.45]

A typical procedure for Na assay is One gram proplnt samples sealed in polyethylene vials are irradiated for at least seven hrs in the thermal column. In order to minimize any thermal neutron flux gradient, the samples are rotated uniaxially at 60 rpm. Following irradiation, the samples are allowed to decay for approx 15 hrs to permit all short-lived radioisotopes to decay to insignificance. The 1.369 MeV 7-photopeak of each sample is then counted for 10 min with a 7.6cm x 7.6cm Na iodide scintillation detector coupled to a 400-channel pulse-height analyzer... [Pg.363]

The NAA measurements on the paper samples were made at the Breazeale Nuclear Reactor Facility at the Pennsylvania State University with a TRIGA Mark III reactor at a flux of about 1013 n/cm2-sec. Samples were irradiated from 2 to 20 min and counted for 2000 sec, after a 90 min decay time for Ba and a 60 hr decay for Sb, Analyses were performed instrumentally, without radiochemical separation, using a 35cm3 coaxial Ge-Li detector and a 4096-channel pulse height analyzer. With these procedures, detection limits for Ba and Sb were 0.02ug and 0.001 ug, respectively. These sensitivities are comparable to those obtained by GA s radiochemical separation procedure, and are made possible by the use of the higher neutron output from the more powerful reactor and in combination with the higher resolution solid state detector... [Pg.376]

The y-detector of a Mossbauer spectrometer converts the incident y-photons into electric output pulses of defined charge (see Sect. 3.1.6). The detector signals are electronically amplified and shaped by an amplifier network to obtain strong needle pulses with well-defined rise time, so that the pulse height is proportional to the energy of the incident photon. The amplifiers are usually adjusted to obtain... [Pg.35]

The Mossbauer spectrometer will typically divide the velocity scale into 256 channels. For a 0.93 GBq source (25 mCi), the total count rate of photons arriving at the detector and having the proper pulse-height is usually about C = 20,000 counts s Only about 85% of these will be 14.4 keV radiation the others are... [Pg.47]

The signals from the detectors are amplified to create a voltage pulse with amplitude proportional to the energy of the charged particle. Data acquisition, storage and display is effected by an MCA providing pulse-height analysis. [Pg.88]

The detector signal is conditioned through a single channel pulse height analyzer whose output pulses are fed to a scaler-timer in the single crystal controller. [Pg.142]

The pulse height can be computed if the capacitance, detector characteristics, and radiation are known. The capacitance is normally about 10 4 farads. The number of ionizing events may be calculated if the detector size and specific ionization, or range of the charged particle, are known. The only variable is the gas amplification factor that is dependent on applied voltage. [Pg.37]

A discriminator circuit selects the minimum pulse height. When the input pulse exceeds the discriminator preset level, the discriminator generates an output pulse. The discriminator input is normally an amplified and shaped detector signal. This signal is an analog signal because the amplitude is proportional to the energy of the incident particle. [Pg.83]

Tseng et al. [69] determined 60cobalt in seawater by successive extractions with tris(pyrrolidine dithiocarbamate) bismuth (III) and ammonium pyrrolidine dithiocarbamate and back-extraction with bismuth (III). Filtered seawater adjusted to pH 1.0-1.5 was extracted with chloroform and 0.01 M tris(pyrrolidine dithiocarbamate) bismuth (III) to remove certain metallic contaminants. The aqueous residue was adjusted to pH 4.5 and re-extracted with chloroform and 2% ammonium pyrrolidine thiocarbamate, to remove cobalt. Back-extraction with bismuth (III) solution removed further trace elements. The organic phase was dried under infrared and counted in a ger-manium/lithium detector coupled to a 4096 channel pulse height analyser. Indicated recovery was 96%, and the analysis time excluding counting was 50-min per sample. [Pg.353]

Excitation of sample by bombardment with electrons, radioactive particles or white X-rays. Dispersive crystal analysers dispersing radiation at angles dependent upon energy (wavelength), detection of radiation with gas ionization or scintillation counters. Non-dispersive semiconductor detectors used in conjunction with multichannel pulse height analysers. Electron beam excitation together with scanning electron microscopes. [Pg.335]

The instruments used in X-ray emission spectrometry reflect the principles set out in Chapter 7. Radiation characteristic of the specimen is produced by electron or radiation bombardment. Monochromatic radiation is then presented to the detector by a diffraction device or by use of a series of narrow bandpass filters. Alternatively pulse height analysis (p. 465) can be applied to a series of pulses which have been generated with a size proportional to the radiation energy. Typical X-ray spectrometry arrangements are shown in Figures 8.40 and 8.41. [Pg.344]

The alternative approach to detection and analysis incorporates a solid state detector and a multichannel pulse height analysis system. The crystals used are of silicon (of the highly pure intrinsic type), or the lithium drift principle (p. 463 etseq.) is utilized. All emitted radiations are presented to the detector simultaneously and a spectrum is generated from an electronic analysis of the mixture of voltage pulses produced. Chapter 10 contains a more detailed account of pulse height analysis and solid state detectors. Production of an X-ray spectrum in this way is sometimes known as energy dispersive analysis ofX-rays (EDAX) and where an electron microscope is employed as SEM-EDAX. [Pg.347]

Gas ionization, solid scintillation, liquid scintillation and semiconductor detectors, autoradiography. Single and multichannel pulse height analysers. Coincidence and anticoincidence circuits. [Pg.450]


See other pages where Detector pulse height is mentioned: [Pg.386]    [Pg.183]    [Pg.387]    [Pg.123]    [Pg.93]    [Pg.93]    [Pg.89]    [Pg.386]    [Pg.183]    [Pg.387]    [Pg.123]    [Pg.93]    [Pg.93]    [Pg.89]    [Pg.1830]    [Pg.320]    [Pg.491]    [Pg.199]    [Pg.53]    [Pg.56]    [Pg.61]    [Pg.62]    [Pg.63]    [Pg.64]    [Pg.66]    [Pg.67]    [Pg.115]    [Pg.292]    [Pg.371]    [Pg.383]    [Pg.37]    [Pg.41]    [Pg.120]    [Pg.38]    [Pg.39]    [Pg.66]    [Pg.357]    [Pg.334]    [Pg.346]   
See also in sourсe #XX -- [ Pg.8 ]




SEARCH



Detectors pulsed

Pulse-height

Scintillation detectors pulse height analyzers

© 2024 chempedia.info