Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Detection limits spectrometers

An energy dispersive spectrometer is cheaper and faster for multielement analytical purposes but has poorer detection limits and resolution. [Pg.324]

As atomic fluorescence spectrometer a mercury analyzer Mercur , (Analytik-Jena, Germany) was used. In the amalgamation mode an increase of sensitivity by a factor of approximately 7-8 is obtained compared with direct introduction, resulting in a detection limit of 0,09 ng/1. This detection limit has been improved further by pre-concentration of larger volumes of samples and optimization of instrumental parameters. Detection limit 0,02 ng/1 was achieved, RSD = 1-6 %. [Pg.171]

The minimum detection limit, MDL, of an isolated peak on a uniform background is proportional to the square root of the FWHM. So a 20% reduction in spectrometer resolution will produce about a 10% improvement in MDL. If there is peak overlap, however, then it can be shown that a 20% improvement in resolution can reduce the interference between overlapping peaks by a factor of 3, which gives about a 50% improvement in MDL. [Pg.127]

The choice of mass spectrometer for a particular analysis depends on the namre of the sample and the desired results. For low detection limits, high mass resolution, or stigmatic imaging, a magnetic sector-based instrument should be used. The analysis of dielectric materials (in many cases) or a need for ultrahigh depth resolution requires the use of a quadrupole instrument. [Pg.548]

Molecular ion mass interferences are not as prevalent for the simpler matrices, as is clear from the mass spectrum obtained for the Pechiney 11630 A1 standard sample by electron-gas SNMSd (Figure 4). For metals like high-purity Al, the use of the quadrupole mass spectrometer can be quite satisfiictory. The dopant elements are present in this standard at the level of several tens of ppm and are quite evident in the mass spectrum. While the detection limit on the order of one ppm is comparable to that obtained from optical techniques, the elemental coverage by SNMS is much more comprehensive. [Pg.578]

Laser ionization mass spectrometry or laser microprobing (LIMS) is a microanalyt-ical technique used to rapidly characterize the elemental and, sometimes, molecular composition of materials. It is based on the ability of short high-power laser pulses (-10 ns) to produce ions from solids. The ions formed in these brief pulses are analyzed using a time-of-flight mass spectrometer. The quasi-simultaneous collection of all ion masses allows the survey analysis of unknown materials. The main applications of LIMS are in failure analysis, where chemical differences between a contaminated sample and a control need to be rapidly assessed. The ability to focus the laser beam to a diameter of approximately 1 mm permits the application of this technique to the characterization of small features, for example, in integrated circuits. The LIMS detection limits for many elements are close to 10 at/cm, which makes this technique considerably more sensitive than other survey microan-alytical techniques, such as Auger Electron Spectroscopy (AES) or Electron Probe Microanalysis (EPMA). Additionally, LIMS can be used to analyze insulating sam-... [Pg.586]

The material evaporated by the laser pulse is representative of the composition of the solid, however the ion signals that are actually measured by the mass spectrometer must be interpreted in the light of different ionization efficiencies. A comprehensive model for ion formation from solids under typical LIMS conditions does not exist, but we are able to estimate that under high laser irradiance conditions (>10 W/cm ) the detection limits vary from approximately 1 ppm atomic for easily ionized elements (such as the alkalis, in positive-ion spectroscopy, or the halogens, in negative-ion spectroscopy) to 100—200 ppm atomic for elements with poor ion yields (for example, Zn or As). [Pg.587]

Detection limits in ICPMS depend on several factors. Dilution of the sample has a lai e effect. The amount of sample that may be in solution is governed by suppression effects and tolerable levels of dissolved solids. The response curve of the mass spectrometer has a large effect. A typical response curve for an ICPMS instrument shows much greater sensitivity for elements in the middle of the mass range (around 120 amu). Isotopic distribution is an important factor. Elements with more abundant isotopes at useful masses for analysis show lower detection limits. Other factors that affect detection limits include interference (i.e., ambiguity in identification that arises because an elemental isotope has the same mass as a compound molecules that may be present in the system) and ionization potentials. Elements that are not efficiently ionized, such as arsenic, suffer from poorer detection limits. [Pg.628]

One of the important advantages of ICPMS in problem solving is the ability to obtain a semiquantitative analysis of most elements in the periodic table in a few minutes. In addition, sub-ppb detection limits may be achieved using only a small amount of sample. This is possible because the response curve of the mass spectrometer over the relatively small mass range required for elemental analysis may be determined easily under a given set of matrix and instrument conditions. This curve can be used in conjunction with an internal or external standard to quantily within the sample. A recent study has found accuracies of 5—20% for this type of analysis. The shape of the response curve is affected by several factors. These include matrix (particularly organic components), voltages within the ion optics, and the temperature of the interffice. [Pg.630]

Detection limits for a particular sample depend on a number of parameters, including observation height in the plasma, applied power, gas flow rates, spectrometer resolution, integration time, the sample introduction system, and sample-induced background or spectral overlaps. ... [Pg.638]

ICP-OES is one of the most successful multielement analysis techniques for materials characterization. While precision and interference effects are generally best when solutions are analyzed, a number of techniques allow the direct analysis of solids. The strengths of ICP-OES include speed, relatively small interference effects, low detection limits, and applicability to a wide variety of materials. Improvements are expected in sample-introduction techniques, spectrometers that detect simultaneously the entire ultraviolet—visible spectrum with high resolution, and in the development of intelligent instruments to further improve analysis reliability. ICPMS vigorously competes with ICP-OES, particularly when low detection limits are required. [Pg.643]

Describes how spectrometer resolution affects detection limits in the presence and absence of spectral overlaps. [Pg.643]

A novel HF-plasma SNMS instrument which can be combined with XPS has recently been developed [3.67]. Detection limits in the nmol/mol range have been achieved with a dedicated HF-plasma instrument attached to a double-focussing mass spectrometer [3.68]. [Pg.127]

Applications The differential optical absorption spectrometer has been used to monitor concentrations of gases or intermediate compounds such as SO, NO, O5, HCHO, HNO, CS, NO, and OH in the atmosphere.In atmospheric measurements with open paths of 100 to 1000 m, a detection limit of about 1 ppb can be achieved. In the emission measurements, the path length across the duct or the plume can range in meters. [Pg.1303]

Ionisation method Principal ions detected (+/—) Mass spectrometer" Sample classes Approximate mass limit (Da)... [Pg.358]


See other pages where Detection limits spectrometers is mentioned: [Pg.571]    [Pg.585]    [Pg.549]    [Pg.171]    [Pg.317]    [Pg.321]    [Pg.248]    [Pg.46]    [Pg.71]    [Pg.90]    [Pg.182]    [Pg.529]    [Pg.530]    [Pg.530]    [Pg.531]    [Pg.543]    [Pg.547]    [Pg.604]    [Pg.612]    [Pg.622]    [Pg.136]    [Pg.45]    [Pg.259]    [Pg.333]    [Pg.344]    [Pg.153]    [Pg.833]    [Pg.912]    [Pg.55]    [Pg.63]    [Pg.267]    [Pg.489]    [Pg.497]    [Pg.350]   
See also in sourсe #XX -- [ Pg.464 , Pg.465 ]




SEARCH



Detectable limit

Detection limits

Detection limits, limitations

Detection-limiting

© 2024 chempedia.info