Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Detection enzymatic reactions

Enzymatic determinations of the detection limit where the chromatograms are first sprayed with an enzyme solution Then after appropriate incubation the enzymatically altered components are detected by reaction with a suitable reagent... [Pg.110]

According to Kruger s original hypothesis to explain methyl-ation of rat liver DNA following administration of NDPA, NMPA should be formed from NOPPA. NOPPA is converted into NMPA in a base-catalyzed, non-enzymatic reaction, but this takes place only at high pH (16). We observed no detectable reaction at physio-... [Pg.45]

Monitoring enzyme catalyzed reactions by voltammetry and amperometry is an extremely active area of bioelectrochemical interest. Whereas liquid chromatography provides selectivity, the use of enzymes to generate electroactive products provides specificity to electroanalytical techniques. In essence, enzymes are used as a derivatiz-ing agent to convert a nonelectroactive species into an electroactive species. Alternatively, electrochemistry has been used as a sensitive method to follow enzymatic reactions and to determine enzyme activity. Enzyme-linked immunoassays with electrochemical detection have been reported to provide even greater specificity and sensitivity than other enzyme linked electrochemical techniques. [Pg.28]

The simplest method of coupling enzymatic reactions to electrochemical detection is to monitor an off-line reaction using FIAEC or LCEC. The enzymatic reaction is carried out in a test tube under controlled conditions with aliquots being taken at timed intervals. These aliquots are then analyzed for the electroactive product and the enzyme activity in the sample calculated from the generated kinetic information. [Pg.29]

Because LCEC had its initial impact in neurochemical analysis, it is not, surprising that many of the early enzyme-linked electrochemical methods are of neurologically important enzymes. Many of the enzymes involved in catecholamine metabolism have been determined by electrochemical means. Phenylalanine hydroxylase activity has been determined by el trochemicaUy monitoring the conversion of tetrahydro-biopterin to dihydrobiopterin Another monooxygenase, tyrosine hydroxylase, has been determined by detecting the DOPA produced by the enzymatic reaction Formation of DOPA has also been monitored electrochemically to determine the activity of L-aromatic amino acid decarboxylase Other enzymes involved in catecholamine metabolism which have been determined electrochemically include dopamine-p-hydroxylase phenylethanolamine-N-methyltransferase and catechol-O-methyltransferase . Electrochemical detection of DOPA has also been used to determine the activity of y-glutamyltranspeptidase The cytochrome P-450 enzyme system has been studied by observing the conversion of benzene to phenol and subsequently to hydroquinone and catechol... [Pg.29]

Lequea et al. used the activity of tyrosine apodecarboxylase to determine the concentration of the enzyme cofactor pyridoxal 5 -phosphate (vitamin B6). The inactive apoenzyme is converted to the active enzyme by pyridoxal 5 -phosphate. By keeping the cofactor the limiting reagent in the reaction by adding excess apoenzyme and substrate, the enzyme activity is a direct measure of cofactor concentration. The enzymatic reaction was followed by detecting tyramine formation by LCEC. The authors used this method to determine vitamin B6 concentrations in plasma samples. [Pg.29]

The demand for monitoring common metabolites of diagnostic utility such as glucose, urea and creatinine continue to provide the impetus for a staggering research effort towards more perfect enzyme electrodes. The inherent specificity of an enzyme for a given substrate, coupled with the ability to electrochemically detect many of the products of enzymatic reactions initiated the search for molecule-selective electrodes. [Pg.62]

Another approach has been to immobilize proteins within arrays of microfabricated polyacrylamide gel pads (Arenkov et al., 2000). Nanoliters of protein solutions are transferred to 100 x 100 x 20-pM gel pads and assayed with antibodies that are labeled with a fluorescent tag. Antigen imbedded in the gel pads can be detected with high sensitivity and specificity (Arenkov et al., 2000). Furthermore, enzymes such as alkaline phosphatase can be immobilized in the gel pads and enzymatic activity is readily detected upon the addition of an indicator substrate. The main advantage of the use of the threedimensional gel pad for fixation of proteins is the large capacity for immobilized molecules. In addition, the pads in the array are separated from one another by a hydrophobic surface. Thus, each pad behaves as a small test tube for assay of protein-protein interactions and enzymatic reactions (Arenkov et al., 2000). The disadvantage of the method is the need to microfabricate the array of gel pads in that microfabrication is... [Pg.96]

The optically active Schiff bases containing intramolecular hydrogen bonds are of major interest because of their use as ligands for complexes employed as catalysts in enantioselective reactions or model compounds in studies of enzymatic reactions. In the studies of intramolecularly hydrogen bonded Schiff bases, the NMR spectroscopy is widely used and allows detection of the presence of proton transfer equilibrium and determination of the mole fraction of tautomers [21]. Literature gives a few names of tautomers in equilibrium. The OH-tautomer has been also known as OH-, enol- or imine-form, while NH tautomer as NH-, keto-, enamine-, or proton-transferred form. More detail information concerning the application of NMR spectroscopy for investigation of proton transfer equilibrium in Schiff bases is presented in reviews.42-44... [Pg.144]

Chemiluminescence reactions are currently exploited mainly either for analyte concentration measurements or for immunoanalysis and nucleic acid detection. In the latter case, a compound involved in the light emitting reaction is used as a label for immunoassays or for nucleic acid probes. In the former case, the analyte of interest directly participates in a chemiluminescence reaction or undergoes a chemical or an enzymatic transformation in such a way that one of the reaction products is a coreactant of a chemiluminescence reaction. In this respect, chemiluminescent systems that require H2O2 for the light emission are of particular interest in biochemical analysis. Hydrogen peroxide is in fact a product of several enzymatic reactions, which can be then coupled to a chemiluminescent detection. [Pg.158]

Absorbance- and reflectance-based measurements are widespread, as there are many enzymatic reaction products or intermediates that are colored or if not, can react with the appropriate indicator. Sensors using acetylcholinesterase for carbamate pesticides detection are an example of indirect optical fiber biosensors. This enzyme catalyses the hydrolysis of acetylcholine with concomitant decrease in pH41 ... [Pg.349]

A similar study has also been conducted to determine the suitability of ascorbic acid 2-phosphate (AAP) as an alternative substrate to 4-AP for AP under identical conditions [48], Although 4-APP and AAP were suitable substrates for amperometric immunosensors, 4-APP was superior owing to its sixfold faster enzymatic reaction and lower detection potential (approximately 200-400mV). Notably, the lower detection potential for the hydrolysis product of 4-APP minimizes interferences from other species and hence improves the sensitivity of the immunosensor. [Pg.156]

Due to the rapidity of the spontaneous dismutation reactions, the steady-state concentrations of 02 achieved by chemical or by enzymatic reactions are usually quite low. The physical methods for detecting 02, although direct and unequivocal, are restricted to measurements of steady-state concentrations and are thus often found to lack of sensitivity. For distince, due to the reason mentioned above, when the EPR method was employed for studying the 02 production by xanthine oxidase, it was necessary to use a high concentration of the reactants and to work at elevated pH so... [Pg.169]

XOD is one of the most complex flavoproteins and is composed of two identical and catalytically independent subunits each subunit contains one molybdenium center, two iron sulfur centers, and flavine adenine dinucleotide. The enzyme activity is due to a complicated interaction of FAD, molybdenium, iron, and labile sulfur moieties at or near the active site [260], It can be used to detect xanthine and hypoxanthine by immobilizing xanthine oxidase on a glassy carbon paste electrode [261], The elements are based on the chronoamperometric monitoring of the current that occurs due to the oxidation of the hydrogen peroxide which liberates during the enzymatic reaction. The biosensor showed linear dependence in the concentration range between 5.0 X 10 7 and 4.0 X 10-5M for xanthine and 2.0 X 10 5 and 8.0 X 10 5M for hypoxanthine, respectively. The detection limit values were estimated as 1.0 X 10 7 M for xanthine and 5.3 X 10-6M for hypoxanthine, respectively. Li used DNA to embed xanthine oxidase and obtained the electrochemical response of FAD and molybdenum center of xanthine oxidase [262], Moreover, the enzyme keeps its native catalytic activity to hypoxanthine in the DNA film. So the biosensor for hypoxanthine can be based on... [Pg.591]

In the field of responsive agents, enzyme targeting has specific advantages. A small concentration of the enzyme can convert a relatively high amount of the probe in multiple catalytic cycles which considerably decreases the detection limit for the enzyme as compared to other biomolecules. Moreover, enzymatic reactions are usually highly specific therefore, the observed change... [Pg.102]

Figure 12 General flow injection manifold used for the simultaneous determination of (a) organic species involved in enzymatic reactions and (b) inorganic ions, using a reduction column both with CL detection. IV, injection valve. Figure 12 General flow injection manifold used for the simultaneous determination of (a) organic species involved in enzymatic reactions and (b) inorganic ions, using a reduction column both with CL detection. IV, injection valve.

See other pages where Detection enzymatic reactions is mentioned: [Pg.78]    [Pg.2061]    [Pg.170]    [Pg.78]    [Pg.2061]    [Pg.170]    [Pg.44]    [Pg.177]    [Pg.357]    [Pg.32]    [Pg.256]    [Pg.71]    [Pg.84]    [Pg.88]    [Pg.98]    [Pg.104]    [Pg.84]    [Pg.65]    [Pg.241]    [Pg.283]    [Pg.32]    [Pg.333]    [Pg.349]    [Pg.59]    [Pg.60]    [Pg.142]    [Pg.153]    [Pg.154]    [Pg.155]    [Pg.186]    [Pg.211]    [Pg.540]    [Pg.43]    [Pg.157]    [Pg.157]    [Pg.163]    [Pg.202]   
See also in sourсe #XX -- [ Pg.122 ]




SEARCH



Detection limit enzymatic reaction

Reaction Enzymatic reactions

Reaction detection

© 2024 chempedia.info