Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Depression neurotransmitters

Other agents are also used for the treatment of manic-depressive disorders based on preliminary clinical results (177). The antiepileptic carbamazepine [298-46-4] has been reported in some clinical studies to be therapeutically beneficial in mild-to-moderate manic depression. Carbamazepine treatment is used especially in bipolar patients intolerant to lithium or nonresponders. A majority of Hthium-resistant, rapidly cycling manic-depressive patients were reported in one study to improve on carbamazepine (178). Carbamazepine blocks noradrenaline reuptake and inhibits noradrenaline exocytosis. The main adverse events are those found commonly with antiepileptics, ie, vigilance problems, nystagmus, ataxia, and anemia, in addition to nausea, diarrhea, or constipation. Carbamazepine can be used in combination with lithium. Several clinical studies report that the calcium channel blocker verapamil [52-53-9] registered for angina pectoris and supraventricular arrhythmias, may also be effective in the treatment of acute mania. Its use as a mood stabilizer may be unrelated to its calcium-blocking properties. Verapamil also decreases the activity of several neurotransmitters. Severe manic depression is often treated with antipsychotics or benzodiazepine anxiolytics. [Pg.233]

Monoamine oxidase (MAO) inactivates serotonergic and catecholaimnergic neurotransmitters MAO (A and B) inhibitors exhibit mood elevatmg properties 5-Fluoro-Ot-methyltryptamine 19) is an important MAO A-seleUive inhibitor In the treatment of certam depressive illnesses, 4-fluorotranylcypromine (20b) is 10 tunes more potent than the parent tranylcypromme (TCP, 20a) The enhanced m vivo activity may be due to increased lipophihcity at20b and/or to blockade of metabohc para hydroxylation [52]... [Pg.1017]

Opioids G-protein coupled p-, 5-, k-receptors l cAMP l Ca2+ currents t K+ currents l Excitability of peripheral and central neurons l Release of excitatory neurotransmitters p, 5 sedation, nausea, euphoria/re-ward, respiratory depression, constipation k dysphoria/aversion, diuresis, sedation... [Pg.76]

Ubiquitous mitochondrial monoamine oxidase [monoamine oxygen oxidoreductase (deaminating) (flavin-containing) EC 1.4.3.4 MAO] exists in two forms, namely type A and type B [ monoamine oxidase (MAO) A and B]. They are responsible for oxidative deamination of primary, secondary, and tertiary amines, including neurotransmitters, adrenaline, noradrenaline, dopamine (DA), and serotonin and vasoactive amines, such as tyramine and phenylethylamine. Their nonselec-tive and selective inhibitors ( selective MAO-A and -B inhibitors) are employed for the treatment of depressive illness and Parkinson s disease (PD). [Pg.783]

They act as analgesics by inhibiting release of nociceptive neurotransmitters from primary afferent terminals as well as by depressing post-synaptic potentials on second order neurons. Opioid receptors are also present on some nociceptors and their expression and peripheral transport is increased upon peripheral inflammation. Peripheral opioid analgesia has been established in animal models. Although clinical studies have yielded mixed results so far, this field holds great promise. Despite side effects, such as euphoria, dysphoria, sedation, respiratory depression and obstipation and tolerance and dependence phenomena which arise upon... [Pg.930]

The TCAs, such as amitriptyline (Elavil) and dox-epin (Sinequan), inhibit reuptake of norepinephrine or serotonin at the presynaptic neuron. Drug classified as MAOIs inhibit the activity of monoamine oxidase a complex enzyme system that is responsible for breaking down amines. This results in an increase in endogenous epinephrine, norepinephrine and serotonin in the nervous system. An increase in these neurohormones results in stimulation of the CNS. The action of the SSRIs is linked to their inhibition of CNS neuronal uptake of serotonin (a CNS neurotransmitter). The increase in serotonin levels is thought to act as a stimulant to reverse depression. [Pg.282]

Nortriptyline. Nortriptyhne, a tricychc antidepressant, has been shown in double-blind, placebo-controlled randomized trials to be superior to placebo for smoking cessation (Prochazka et al. 1998). Nortriptyline appears to have efficacy comparable to that of bupropion for smoking cessation (Hall et al. 2002). The efficacy of this agent may be improved with more intensive behavioral therapies (Hall et al. 1998). Nortriptyline s mechanism of action is thought to relate to its noradrenergic and serotonergic reuptake blockade, because these two neurotransmitters have been implicated in the neurobiology of nicotine dependence. Side effects of nortiptyline are typical of tricyclic antidepressants and include dry mouth, blurred vision, constipation, and orthostatic hypotension. Nortriptyline appears to have some utility for smokers with a past history of major depression, and it can be recommended as a second-... [Pg.325]

In squid giant axons, PbTx causes a depolarization of the plasma membrane, repetitive discharges followed by depression of action potentials, and a complete blockade of excitability. This action is antagonized by TTX (83,84). PbTx depolarizes nerve terminals and induces neurotransmitter release (85,86) it depolarizes skeletal muscle cells (87) and increases the frequency of action potentials in crayfish nerve cord (88). PbTx also produces a contraction of the guinea pig ileum (89). All these effects are prevented by TTX. [Pg.195]

How the different neurotransmitters may be involved in the initiation and maintenance of some brain disorders, such as Parkinson s disease, epilepsy, schizophrenia, depression, anxiety and dementia, as well as in the sensation of pain, is then evaluated and an attempt made to see how the drugs which are used in these conditions produce their effect by modifying appropriate neurotransmitter function (section C). The final section (D) deals with how neurotransmitters are involved in sleep and consciousness and in the social problems of drug use and abuse. [Pg.1]

Figure 1.8 Some basic neuronal systems. The three different brain areas shown (I, II and III) are hypothetical but could correspond to cortex, brainstem and cord while the neurons and pathways are intended to represent broad generalisations rather than recognisable tracts. A represents large neurons which have long axons that pass directly from one brain region to another, as in the cortico spinal or cortico striatal tracts. Such axons have a restricted influence often only synapsing on one or a few distal neurons. B are smaller inter or intrinsic neurons that have their cell bodies, axons and terminals in the same brain area. They can occur in any region and control (depress or sensitise) adjacent neurons. C are neurons that cluster in specific nuclei and although their axons can form distinct pathways their influence is a modulating one, often on numerous neurons rather than directly controlling activity, as with A . Each type of neuron and system uses neurotransmitters with properties that facilitate their role... Figure 1.8 Some basic neuronal systems. The three different brain areas shown (I, II and III) are hypothetical but could correspond to cortex, brainstem and cord while the neurons and pathways are intended to represent broad generalisations rather than recognisable tracts. A represents large neurons which have long axons that pass directly from one brain region to another, as in the cortico spinal or cortico striatal tracts. Such axons have a restricted influence often only synapsing on one or a few distal neurons. B are smaller inter or intrinsic neurons that have their cell bodies, axons and terminals in the same brain area. They can occur in any region and control (depress or sensitise) adjacent neurons. C are neurons that cluster in specific nuclei and although their axons can form distinct pathways their influence is a modulating one, often on numerous neurons rather than directly controlling activity, as with A . Each type of neuron and system uses neurotransmitters with properties that facilitate their role...
There is some evidence that receptors for other neurotransmitters on 5-HT nerve terminals also modify release of 5-HT. These include nicotinic receptors (increase release from striatal synaptosomes), a2A-adrenoceptors (depress cortical release) and H3-receptors (cortical depression). Because changes in 5-HT release on activation of these receptors is evident in synaptosomal preparations, it is likely that these are true heteroceptors . [Pg.194]

The objective of these studies is to find a neurochemical marker for depression. For obvious reasons, the majority has looked for changes that might affect monoamine function and so the following sections concentrate on these neurotransmitters. (Evidence suggesting that a dysfunction of the gluocorticoid hormonal system could be involved is discussed later.) Most techniques compare depressed and non-depressed (control) subjects and measure ... [Pg.427]

Setting aside the general anaesthetics, which do not directly modify the function of any particular neurotransmitter, all the drugs that are used to induce sleep, i.e. the hypnotics , augment the function of GABA and so directly depress neuronal function and probably facilitate cortico-thalamic synchrony. Most of them are benzodiazepines... [Pg.495]

O Classic views as to the cause of major depressive disorder focus on the monoamine neurotransmitters norepinephrine (NE), serotonin (5-HT), and to a lesser extent, dopamine (DA) in terms of both synaptic concentrations and receptor functioning. [Pg.569]

The neurotransmitter receptor hypothesis suggests that depression is related to abnormal functioning of neurotransmitter receptors. In this model, antidepressants presumably exert therapeutic effects by altering receptor sensitivity. In fact,... [Pg.570]


See other pages where Depression neurotransmitters is mentioned: [Pg.340]    [Pg.341]    [Pg.1604]    [Pg.140]    [Pg.195]    [Pg.340]    [Pg.341]    [Pg.1604]    [Pg.140]    [Pg.195]    [Pg.200]    [Pg.200]    [Pg.530]    [Pg.228]    [Pg.233]    [Pg.237]    [Pg.461]    [Pg.49]    [Pg.21]    [Pg.112]    [Pg.115]    [Pg.836]    [Pg.840]    [Pg.1170]    [Pg.1222]    [Pg.1274]    [Pg.282]    [Pg.108]    [Pg.181]    [Pg.188]    [Pg.5]    [Pg.220]    [Pg.446]    [Pg.450]    [Pg.466]    [Pg.497]    [Pg.240]    [Pg.182]    [Pg.475]    [Pg.538]    [Pg.570]   
See also in sourсe #XX -- [ Pg.419 ]

See also in sourсe #XX -- [ Pg.18 ]




SEARCH



Neurotransmitter receptor hypothesis depression

Neurotransmitter receptor hypothesis of depression

Neurotransmitters and Their Role in Depression

© 2024 chempedia.info