Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Density functional theory origins

The entropically driven disorder-order transition in hard-sphere fluids was originally discovered in computer simulations [58, 59]. The development of colloidal suspensions behaving as hard spheres (i.e., having negligible Hamaker constants, see Section VI-3) provided the means to experimentally verify the transition. Experimental data on the nucleation of hard-sphere colloidal crystals [60] allows one to extract the hard-sphere solid-liquid interfacial tension, 7 = 0.55 0.02k T/o, where a is the hard-sphere diameter [61]. This value agrees well with that found from density functional theory, 7 = 0.6 0.02k r/a 2 [21] (Section IX-2A). [Pg.337]

Until the advent of density functional theory (Chapter 13), thinking centred around means of circumventing the two-electron integral transformation, or at least partially circumventing it. The Mpller-Plesset method is one of immense historical importance, and you might like to read the original paper. [Pg.199]

Density functional theory was originally developed by solid-state physicists for treating crystalline solids and almost all applications were in that field until the mid-1980s. It is a current hot topic in chemistry, with many papers appearing in the primary journals. [Pg.229]

Let us introduce another early example by Slater, 1951, where the electron density is exploited as the central quantity. This approach was originally constructed not with density functional theory in mind, but as an approximation to the non-local and complicated exchange contribution of the Hartree-Fock scheme. We have seen in the previous chapter that the exchange contribution stemming from the antisymmetry of the wave function can be expressed as the interaction between the charge density of spin o and the Fermi hole of the same spin... [Pg.48]

What does this mean We have replaced the non-local and therefore fairly complicated exchange term of Hartree-Fock theory as given in equation (3-3) by a simple approximate expression which depends only on the local values of the electron density. Thus, this expression represents a density functional for the exchange energy. As noted above, this formula was originally explicitly derived as an approximation to the HF scheme, without any reference to density functional theory. To improve the quality of this approximation an adjustable, semiempirical parameter a was introduced into the pre-factor Cx which leads to the Xa or Hartree-Fock-Slater (HFS) method which enjoyed a significant amount of popularity among physicists, but never had much impact in chemistry,... [Pg.49]

In a rigorous sense, non-transferability of molecular parts has profound implications on chemical conclusions based on electron densities. Since some of the original results on the utility and reliability of transferred electron densities have been derived within the framework of density functional theory, here we shall follow this approach, and describe a recent result on a general, holographic property of electron density fragments of complete, boundaryless molecular electron densities. [Pg.66]

Generally, all band theoretical calculations of momentum densities are based on the local-density approximation (LDA) [1] of density functional theory (DFT) [2], The LDA-based band theory can explain qualitatively the characteristics of overall shape and fine structures of the observed Compton profiles (CPs). However, the LDA calculation yields CPs which are higher than the experimental CPs at small momenta and lower at large momenta. Furthermore, the LDA computation always produces more pronounced fine structures which originate in the Fermi surface geometry and higher momentum components than those found in the experiments [3-5]. [Pg.82]

It is important to realize that each of the electronic-structure methods discussed above displays certain shortcomings in reproducing the correct band structure of the host crystal and consequently the positions of defect levels. Hartree-Fock methods severely overestimate the semiconductor band gap, sometimes by several electron volts (Estreicher, 1988). In semi-empirical methods, the situation is usually even worse, and the band structure may not be reliably represented (Deak and Snyder, 1987 Besson et al., 1988). Density-functional theory, on the other hand, provides a quite accurate description of the band structure, except for an underestimation of the band gap (by up to 50%). Indeed, density-functional theory predicts conduction bands and hence conduction-band-derived energy levels to be too low. This problem has been studied in great detail, and its origins are well understood (see, e.g., Hybertsen and Louie, 1986). To solve it, however, requires techniques of many-body theory and carrying out a quasi-particle calculation. Such calculational schemes are presently prohibitively complex and too computationally demanding to apply to defect calculations. [Pg.609]

Density functional theory was originally formalized for the ground state [1]. It is valid for the lowest energy state in each symmetry class [2,3]. To calculate excitation energies, Slater [4] introduced the transition state method, which proved to be a reasonably good one to calculate excitation energies. [Pg.121]

The origins of density functional theory (DFT) are to be found in the statistical theory of atoms proposed independently by Thomas in 1926 [1] and Fermi in 1928 [2]. The inclusion of exchange in this theory was proposed by Dirac in 1930 [3]. In his paper, Dirac introduced the idempotent first-order density matrix which now carries his name and is the result of a total wave function which is approximated by a single Slater determinant. The total energy underlying the Thomas-Fermi-Dirac (TFD) theory can be written (see, e.g. March [4], [5]) as... [Pg.59]

Density functional theory is originally based on the Hohenberg-Kohn theorem [105, 106]. In the case of a many-electron system, the Hohenberg-Kohn theorem establishes that the ground-state electronic density p(r), instead of the potential v(r), can be used as the fundamental variable to describe the physical properties of the system. In the case of a Hamiltonian given by... [Pg.529]


See other pages where Density functional theory origins is mentioned: [Pg.714]    [Pg.473]    [Pg.218]    [Pg.802]    [Pg.206]    [Pg.507]    [Pg.16]    [Pg.204]    [Pg.98]    [Pg.57]    [Pg.58]    [Pg.83]    [Pg.88]    [Pg.115]    [Pg.117]    [Pg.216]    [Pg.220]    [Pg.222]    [Pg.249]    [Pg.379]    [Pg.386]    [Pg.222]    [Pg.5]    [Pg.225]    [Pg.329]    [Pg.139]    [Pg.107]    [Pg.612]    [Pg.44]    [Pg.229]    [Pg.1]    [Pg.192]    [Pg.23]    [Pg.75]    [Pg.306]    [Pg.111]    [Pg.326]    [Pg.340]    [Pg.10]    [Pg.171]   
See also in sourсe #XX -- [ Pg.159 ]




SEARCH



Origin density

© 2024 chempedia.info